Diss. ETH No. 17713
TIK-Schriftenreihe Nr. 97

Entropy-Based Worm Detection
for Fast IP Networks

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH

for the degree of
Doctor of Technical Sciences

presented by
ARNO WAGNER

Dipl. Inform.
born January 7th, 1969
citizen of Austria

accepted on the recommendation of
Prof. Bernhard Plattner, examiner
Prof. John McHugh, co-examiner

2008

Copyright Arno Wagner 2008.

Some rights reserved. This work is published under the @se&ommons
Attribution-NonCommercial-ShareAlike 3.0 License. Coemncial distribu-
tion of this work requires a prior written permission of thettzor. Non-
commercial distribution is permitted. Derived work is péted with some
limitations. See the Appendix “License” for the full licemstatement.

Printed copies are available for a fee from Verlag Dr. Hut,
http:/fwww.dr.hut-verlag.de , Email: info@dr.hut-verlag.de

Abstract

A significant threat to computers connected to the Intenreelrdernet worms.
A worm is a software program that self-replicates to othengoters over a
network. Typically this involves a security compromiselod target computer
system. An Internet worm replicates using the Internet asnancunication
medium. In particular, fast Internet worms are capable affp@mising large
numbers of hosts in a very short time. Observed worms havegeahto
compromise up to 500’000 hosts in 8 hours (Blaster worm) ¢dd®hosts
in 15 minutes (Witty worm). The compromised hosts can themded for
secondary attacks, for example flooding-type Denial of Berattacks. The
secondary attacks are typically executed using a malipaykad contained
in the worm code, but worms can also be used to build up nesvairkom-
promised computers that are controlled remotely. In amdljthe propagation
phase of a fast Internet worm can cause significant netwestkrdliances.

We present a detection method for fast Internet worms, thasable on
high and very high volume networks, for example Internekbaces. Dur-
ing our investigation, we determined that propagatiorfitraff fast Internet
worms has a specific impact on the entropy of address fieldstimank traf-
fic data. One specific change is that each worm-infected logacts many
others in a short time, causing source IP address entropyofn dnd target
IP address entropy to increase. Such a connection patteamesn ordi-
nary Internet traffic and usually only seen in scanning és. However,
non-worm scanning has lower intensity and is generally nutavork-wide
event. A similar change can be observed in the port numbeteqgiropaga-
tion traffic.

We used three different approaches to better understandri@snet

worms and their impact on network traffic. First we built a glator that is
capable of simulating Internet-wide worm outbreaks ré&ahdly in a quan-

ii Abstract

titative fashion. The simulator gave us insights into whstects are most
important for the propagation speed of an Internet worm. $eeond step,
we modelled the impact of worm propagation traffic theoedljc We were

able to demonstrate that entropy changes in a charaatefasthion in the

presence of worm propagation traffic. In addition, we dideagive mea-
surements on a large set of traffic data to determine the elsaingentropy

characteristics during worm outbreaks. The observatiomgiren the theo-

retical analysis and show that the expected effects carthbe observed in
real network traffic.

The characteristic Entropy changes were used to constrtioeahold-
based detector for fast Internet worms. Our method is gererd does not
require knowledge of the specific vulnerabilities used gy worm to com-
promise the target computers. The implemented prototypeatable and
very lean with regard to computational effort. Memory cangtion can be
reduced to a small constant when entropy estimation usimglgsentropy is
replaced with entropy estimation by using a data compressgporithm.

A primary quality measure for a worm detector is the numbefatsfe
alerts, i.e. false positives, it produces. Typical Int¢treffic contains a mul-
titude of anomalies, most of them of no further consequenéea detec-
tor reports all these anomalies indiscriminately, it beesruof little practical
use. We evaluated the detector design on half a year of nletthaia from
a medium-sized Internet backbone, demonstrating thatsddve detection
latency and produces a low number of false positives. Vatidavas per-
formed with entropy estimated by sample entropy and withoggtestimated
by compression. The detection quality using compressionngparable. We
also compared the two entropy estimation approaches Wifget not in the
context of a detector) and found that results are generatijles, although
compression shows a higher sensitivity to short-term afiesa

In addition to the scientific contribution, challenges antlisons for the
problem of capturing and handling large amounts of flowdleetwork data
are presented and discussed. These include experientedesign, imple-
mentation and operation of a data capturing and procesgsigra and soft-
ware over a period of several years.

Zusammenfassung

Internet-Wirmer stellen eine ernste Bedrohung dar. Ein Wurm ist ein Pro
gramm das sich selbs#stdigiiber ein Netz auf Rechner verbreitet. Dies er-
fordert normalerweise einen Bruch der Sicherheit des ys&tsns. Bei einem
Internet-Wurm ist das benutze Netzwerk das Internet. Slkehhaternet-
Wirmer lonnen in sehr kurzer Zeit eine grosse Anzahl von Rechnern in-
fizieren. Beobachtet wurden Zahlen von 500000 komproeritth Rechn-
ern in 8 Stunden (Blaster Wurm) und 15’000 Rechnern in 15 tdin§witty
Wurm). Die infizierten Rechnerdnnen fir weitere Angriffe genutzt wer-
den, beispielsweisdlf Denial of Service Angriffe (Mermindern der Dien-
stgite eines Dienstes bis hin zum Totalausfall, zum Beispiethirluten
des Zielsystems mit Anfragen). Der entsprechende Angdtfe kann bereits
im Wurmcode enthalten sein, Wmer kbdnnen jedoch auch genutzt werden,
um Gruppen ferngesteuerter Rechner aufzubauenatZlich kann die Ver-
breitungsphase eines schnellen Internet-Wurms erhebBaeintachtigun-
gen des Netzes mit sich bringen.

In dieser Arbeit stellen wir eine Methode zur Erkennung vohngllen
Internet-Wirmern vor, die fir sehr schnelle Netze geeignet ist. Bei unseren
Untersuchungen stellten wir fest, dass die Verbreitunaspleines schnellen
Internet-Wurms einen characteristischen Einfluss auf digdpie der IP-
Adressfelder im Netzwerkverkehr hat. Eine spezifischéhderung ist, dass
jeder infizierte Rechner in kurzer Zeit viele andere konéaktund daher die
Entropie in den Quelladresseallf und in den Zieladressen steigt. Dieses
Muster ist untypisch und wird normalerweise nur beim Scartrepbachtet.
Scannen, das nicht von einem Wurm kommt, hat jedoch niedrigeensiat
und ist generell kein netzwerkweites Ereignis. Eihaliche Veanderung der
Entropie kann wethrend einem Wurmausbruch bei Porthnummern beobachtet
werden.

iv Zusammenfassung

Wir nutzen drei verschiedene Adze, um Internet-\Wwmer und ihren
Einfluss auf das Netz besser zu verstehen. Erstens wurdeuaittitativer
Simulator entwickelt, der in der Lage ist, Wurmadstite im Internet real-
istisch zu simulieren. Hauptresultate sind Erkenntnigsg¢che technischen
Aspekte eines Wurms am wichtigstdir eine schnelle Verbreitung sind. In
einem zweiten Schritt wurde ein theoretisches Modé@llden Einfluss des
durch Wurmverbreitung erzeugten Netzverkehrs geschatiEnkonnte ge-
zeigt werden, dass die entstehenden Entropéendrungen allgemein einem
charakteristischen Muster folgen. Ztglich wurden umfangreiche Messun-
gen auf einer grossen Datenmenge vorgenommen, die dastisebe Mod-
ell bestitigen und zeigen, dass die erwartetenavielerungen taéehlich in
echtem Netzverkehr beobachtet werdénten.

Auf Basis dieser spezifischen Entropigdederungen wurde ein Schwell-
wert-orientierter Wurmdetektor implementiert. Der vendete Ansatz ist ge-
nerisch und Bngt nicht von der spezifischen Verwundbarkeit, die der Wurm
nutzt, ab. Der Prototyp skaliert gut im Veédinis zur verarbeiteten Daten-
menge und béitigt nur wenig Rechenleistung. Der Speicherbedarf karfin au
einen sehr kleinen Wert reduziert werden, wenn Entropiefddompression
gesclatzt wird, anstelle einer Aughlung von Stichproben.

Ein primares Qualétsmass ifr einen Wurm-Detektor ist die Anzahl
verursachter Fehlalarme. In normalem Internetverkeheirst Vielzahl von
Anomalien enthalten. Wenn ein Detektor auf diese reagiemeie zu un-
terscheiden, hat er wenig praktischen Wert. Der vorgeéstBiétektor wurde
auf einem halben Jahr Netzverkehr eines Internet Backbuitderer Giosse
evaluiert. Hierbei wurde demonstriert, dass er schnetliszaund eine nie-
drige Anzahl von Fehlalarmen verursacht. Auf den selberDaturde auch
eine Detektorvariante validiert, die KomprimierbarkednvDatenatzen fir
die Sclatzung ihrer Entropie nutzt. Die Ergebnisse sind von végtearer
Qualitat. Beide Anatze zur Entropiesé@tzung wurden auch direkt (nicht im
Kontext eines Detektors) verglichen. Es wurde gezeigts dasgenerell zu
ahnlichen Ergebnisseiriliren, wobei der kompressionsbasierte Ansatz eine
hohere Sensitivit gegeiiber kurzzeitigen Anomalien aufweist.

Zusatzlich zum wissenschatftlichen Beitrag werden ProblenteLi@isun-
gen zu Fragestellungen der Aufzeichnung und Verarbeitungsgr Men-
gen von Netzwerkdaten im NetFlow Format diskutiert. Hiésverden die
Erfahrungen mit dem Design, der Implementierung und derrfabhigen
Nutzung von Aufzeichungs- und Verarbeitungssystemenjesder erstell-
ten Software beschrieben.

Preface

The creation of a PhD thesis is a lengthy process. At the beginthere is
an idea. The idea for this particular theses was to look atrfitgasrnet worms
in more detail, prompted by an email exchange | had with RgbBob”) X.
Cringley. In his column “Calm Before the Storm” [31], pultied on July 30,
2001, he predicted that the Code Red worm would reactivate.dsent him
a comment that this was not the way worms worked and that hddbbeck
his facts. Fortunately, | decided to monitor the packetsingrmto my own
computer at the expected time of reactivation. About halhaur into the
reactivation, | sent an apology to Bob. The scan traffic frbm rie-awoken
worm was clearly visible on my side. At this stage, the dameagdone and
| was committed to understanding the problem of Internetmgobetter.

The scientific core idea of this thesis, namely to use entsipiistics
as basis of a detection mechanism, came to me some timed#tsr] had
established a data capturing and storage infrastructuneén@the outbreak
of the Nachi.a worm (the Blaster “anti-worm”, which faileadl $top Blaster,
but managed to cause a lot of additional damage), | noticadvthile the
raw data volume (on flow level) increased significantly, tbenpressed data
volume increased only moderately. | later found out thaerghhad the idea
of looking at entropy statistics independently from me,initody seemed to
really have followed up on it.

Initially, | underestimated the effort of dealing with thetwork data that
we had the good fortune to obtain access to because of ourgstodic con-
tacts to SWITCH. | had to build significant infrastructurettbeoftware and
hardware, before | could start any scientific work. Fortehatin time, the
entropy idea turned into a working detector and | was in thguaposition
of doing evaluation measurements on a really large set bfredfic data.

vi Preface

This theses owes its existence to many people. | am grateRbbert X.
Cringely for raising my interest in worms in the first placeanh also grateful
to Nicholas Weaver for his essay "How to Own the Internet iutySpare
Time” that drove home the point that fast Internet worms acearhan just
a nuisance. Professor Plattner made my work possible inr$tepface by
hiring me and by facilitating access to the SWITCH data. Rsde McHugh
provided valuable feedback on the thesis draft. Thomébkebdorfer was
a valuable collaborator in the DDoSVax project and contgdunumerous
ideas. Michael Collins, Andrew Kompanek and the rest of tR&RT netSA
team invited me on several occasions, to FloCon and othepaisd always
provided good discussions and insights.

I could not have built the computing infrastructure for myrwavithout
the help of the Services Group at TIK. Hans-Joerg Brundiads Bhomas
Steingruber provided significant assistance in obtainfiregdomponents for
and setting up the computer cluster “Scylla”. On the sidewfBCH, Simon
Leinen and Peter Haag provided significant help with regautthé NetFlow
data we received from SWITCH. | am also grateful to the SNF(280021-
102026/1) and SWITCH for financing the DDoSVax project. | thaan
Gerke and Placi Flury for being good friends during the pssoef writing
this PhD, and all the other members of the communicatioregsysgroup for
discussions and feedback. | also had the pleasure of sapena number
of students in their thesis work at ETH. Some of these were dmwer joint
supervision with Open Systems, where Stefan Lampart ant \Roelevall
provided excellent support.

Contents

Contents vii
List of Figures Xiii
List of Tables XV
1 Introduction 1
1.1 Detection: SelectivityistheKey 3
1.2 Anomalies During Worm Outbreaks 5
1.3 ProblemStatement L. 6
1.4 ThesisOverview 8
2 Related Work 9
2.1 FastInternetWorms 9
2.2 Worm Simulation, 9
2.2.1 ModellingthelInternet 10
2.3 Anomaly Detection for High-Volume Networks 12
23.1 BlackHoleSensors. 12
2.3.2 ConnectionCounting 13
2.3.3 Oirigin-DestinationFlows 13
24 WormDetection. oo 14
25 Entropy 15
251 Entropy Estimation 16

2.5.2 Compressionin Data Analysis 17

viii Contents
3 Worm Traffic 19
3.1 Definitions. 19
3.2 General Worm Mechanisms. 20
3.3 Infection Mechanisms. 21
3.4 Target Selection Mechanism 22
3.4.1 RandomScanning 22
3.4.2 Local Preferential Scanning 23
3.4.3 HitlistScanning. 23
3.4.4 Topological Scanning 24

3.5 PortCharacteristics 24

3.51 TCP:SourcePort 25
3.5.2 TCP: DestinationPort 25
3.5.3 UDP:SourcePort. 25
3.5.4 UDP: DestinationPort 26
3.6 Expected ImpactofIiPv6 26
3.7 Simulating Worm Traffic 26
3.7.1 Why Predict Worm Behaviour? 27
3.7.2 Worm Characteristics Relevant for a Simulator . . . 27
3.7.3 Simulation and Alternatives 29
3.7.4 SimulatorDesign 31
3.7.5 ImpactofinternetModel 35
4 Entropy in Worm Traffic 45
4.1 Observable Worm Traffic Parameters 45
4.2 Entropy 46
421 Intuition. 46
422 Definition0 oo 47
423 Properties 48
4.2.4 Changes During Worm Qutbreak 49
4.25 ObservationExamples 51
5 Entropy Estimation 55
5.1 Direct Entropy Estimation 55
5.2 Estimation by Compression 56
521 HuffmanCoding 57

Contents iX

522 GZIP e 58
523 BzZIP2. 58
524 LZO. e 59
5.2.5 Compression Comparison Example 59
5.3 Performance and Scalability 59
5.4 Validation 62
541 BasisData 62
5.4.2 Estimation by Compression 62
5.4.3 Entropy Measurement 63
5.4.4 LinearRegression 63
5.4.5 Standard Deviation 67
55 DIisSCUSSION o 75
6 Entropy Based Worm Detection 77
6.1 DetectorDesign 78
6.1.1 Approach, 78
6.1.2 Design 79
6.2 Calibration 81
6.2.1 CalibrationExample 84
6.2.2 Risksof SyntheticData. 85
6.2.3 Reducing False Positives 85
6.3 Scalability 86
6.3.1 LargerNetworks 86
6.3.2 SmallerNetworks 87
6.4 Refinements 87
6.4.1 More Specific DetectionResults 87
6.4.2 Reducing Detection Latency 87
7 Detector Validation 89
7.1 ValidationBasisData 89
7.2 Worms Used for Validation 90
721 TheBlasterWorm 90
722 TheWittyWorm 90
7.3 QualityMeasures 91
7.4 \Validation Results for the Blaster Worm 93

Contents

7.5 Validation Results for the Witty Worm 97
7.5.1 \Validation Results for a Modified Witty Worm . . . 99
7.6 DisCUSSION e e 99
7.7 Simulationas aValidationTool 104
Conclusion 107
8.1 Review of Contributions 107
8.1.1 Summary 111
8.2 Limitations 112
8.3 RelevanceofOurResults 113
8.4 Directionsfor FutureWork 114
The DDoSVax NetFlow Toolset 117
A.l DesignApproach 117
A.2 Architecture 118
A.2.1 Tooll/OandInterconnect 118
A.2.2 NetFlow Version5Export 118
A.3 Library ComponentsandTools 123
A.4 NotesonPerformance. 129
A5 Lessonslearned, 129
A.6 Comparisonto Other Toolsets 130
Data Processing Infrastructure 133
B.1 Motivation. 133
B.2 Structure. 134
B.3 Software and Configuration 135
B.4 Hardware 135
B.5 SecurityConcept, 136
B.6 Experiencesand LessonslLearned
Data Capturing System 139
C.1 Objectives e 139
C.1.1 DataFlow. 139
C.1.2 DataProperties 141

C.2 Compression and Long-Term Storage
C.3 Scalability, Bottlenecks 144

Contents Xi
C.3.1 Network and Operatingsystem 144
C3.2 CPUandMainMemory 145
C.3.3 DiskStorageSpeed 145
C.3.4 Scaling Up Observations from SWITCH Data 145
C.3.5 Performance Improvement 147
C.4 FaultTolerance 147
C.5 Privacy Concerns and Collaboration Possibilities 149
C.6 Lessonslearned 151
Curriculum Vitae 154
Document License 155
Bibliopgraphy 161

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6

51
5.2
53
54
55

Example of a configuration of our Internet model 32
Sapphire worm: Infection speed with original model . . . 36
Sapphire worm: Speed with adjusted model 37
Sapphire worm: Traffic with adjusted model 37
Sapphire worm: 15,000 vulnerable hosts 38
Sapphire worm: 100 sec. infection latency 39
Code Red Iv2: Measurements of infected hosts by CAIDA . 39
Code Red Iv2: Infection speed simulation 40
Code Red Iv2: CAIDA vs. simulation, CAIDA graph scaled

and shifted right for better visibility. 41
Code Red Iv2: Infection speed simulation, logscale 41
Code Red Iv2: Traffic simulation 42
Blaster worm: Flowcount 52
Blaster worm: IP address entropy (TCP traffic) 52
Blaster worm: Port field entropy (TCP traffic) 53
Witty worm: Flowcount 53
Witty worm: IP address entropy (UDP traffic) 54
Witty worm: Port field Entropy (UDP traffic) 54
Witty worm: Compressor comparison 60
TCP - Correlation coefficient, source IP 64
TCP - Correlation coefficient, destinationIP 65
TCP - Correlation coefficient, sourceport 65
TCP - Correlation coefficient, destinationport 66

Xiv List of Figures
5.6 TCP-Correlationanomaly 66
5.7 TCP-Correlationanomaly 67
5.8 UDP - Correlation coefficient, cource IP 68
5.9 UDP - Correlation coefficient, destinationIP 68
5.10 UDP - Correlation coefficient, sourceport 96
5.11 UDP - Correlation coefficient, destinationport 69
5.12 UDP - Correlationanomaly 70
5.13 TCP: Estimated standard deviatiorHpf,(x) — H(x) per day 70
5.14 UDP: Estimated standard deviatiortpfo(x) — H(x) perday 71
5.15 TCPH(X) vs. Hizo(X), source IP, 2004 72
5.16 TCPH (X) vs. Hizo(X), source IP, 2nd quarter 2004 72
5.17 TCPH(X) vs. Hizo(X), source port, 2004 73
5.18 TCP:H (X) vs. Hizo(X), source port, 3rd quarter 2004 74
5.19 UDP:H(x) vs.Hzo(X), source IP, 2004 74
5.20 UDP:H (X) vs. Hizo(X), destination IP, 2004 75
5.21 UDP:H(x) vs. Hiz(x), destination IP, 4th quarter 2004 . . . 76
6.1 Singleintervaldetector 79
6.2 Multiple interval detector 80
6.3 Singleinterval detectorondataplot 81
7.1 Blaster worm: Sample entropy (top) and compressiondbgt 94
7.2 Magnification of Figure 7.1 around outbreak time 59
7.3 Blasterworm: Flowstoport 135TCP 96
7.4 Witty worm: Sample entropy (top) and compression (bnjto100
7.5 Magnification of Figure 7.4 around outbreak time 011
A.1 Example usage ofetflow mix 127
B.1 “Scylla” clusterstructure 134
C.1 Capturing systemdataflow 140
C.2 SWITCH topology (weather map) from www.switch.ch . . . 141
C.3 Minimal needed socket buffer size vs. maximum CPU

scheduling delay (150kiB/s average data volume) 146
C.4 Fault tolerance mechanism on flow capturer 148

List of Tables

3.1
3.2
3.3

51
5.2

6.1

6.2

7.1
7.2
7.3

7.4
7.5
7.6

7.7

Al
A.2
A3

Internet models with4 groups 33
Internet model with 10 groups 33
Simulation parameters 34
Entropy estimation memory needs (worstcase) 61
Average CPU time (Linux, Athlon XP 2800+) 62

Blaster worm profile. “+” means entropy exceeds baseline
during outbreak, “-” means entropy decreases below baselin

duringoutbreak. L oo o 84
Detection thresholds for Blaster 85
Blaster: Tight detection thresholds 93
Blaster: False positives vs. threshold tightness 96
Blaster: Sensitivity vs. reduction in number of Blagtews

needed to trigger the detector 96
Witty: Tight detection thresholds 98
Witty: False positives vs. threshold tightness 98
Witty: Sensitivity vs. reduction in number of Blastervﬂs)

needed to trigger the detector 99

Modified Witty: False positives vs. threshold tightness . 102

NetFlow Version 5 Header Format 119
NetFlow Version 5 Record Format 120
Processing 650MB bzip2 compressed data on SCYLLA nod® 12

XVi List of Tables

B.1 Initial and final available cluster disk space 135

C.1 Typical SWITCH data volume (scaled, start of 2004)2 14
C.2 Compressor comparison (1h data, Athlon XP 2800+ CPU) 2 14
C.3 Maximum export burst of swilX1 (5.12.2005-18.12.2005) 146

Chapter 1

Introduction

The emergence of the Internet as a global communicatiomstrfrcture
brought with it a multitude of new threats to networked comepst Many
widely used operating systems and applications are sifjyetd by frequent
vulnerabilities. While professionally administrated Imtet hosts can be se-
cured to a reasonable degree today, for many computers thiaiattator is a
non-expert, typically the same person as the computer Tiseroften results
in insecure environments, where security patches arellediate or not at
all and many vulnerabilities remain unsecured for a longetirduge mono-
cultures of hosts that have similar vulnerabilities inseethe overall risk.

Consequentially, Internet security is still in its infandhere are numer-
ous threats that can seriously impact Internet users, ltostsected to the
Internet and general Internet network stability. Among test important
problems are spamwhich can render email accounts hard to use by over-
loading the user with a flood of unwanted messages. Therehishipg at-
tacks, where well-known Internet sites, such as those dihare faked and
users are redirected in an attempt to steal their passwoddaaount details
for use in theft, identity-theft and other criminal actyvit

A significant threat are bot-nets, i.e. coordinated grodgompromised
hosts, that can be used for sending spam, conducting Ddr8alreice (DoS)
attacks by flooding sites with traffic and other hostile atég. Bot-nets can

1Unsolicited commercial email and other unwanted mass-mailifigste are three accepted
spellings. “SPAM” refers to the original Trademark by HormebBs, sespam.com. “Spam”
uses the trademark as a name. Finally, “spam” is frequently whketh any confusion with the
trademark should be avoided.

2 1 Introduction

have thousands of member hosts. Researchers have foungtsas large
as 350,000 hosts [32]. However, most attack activity fromirimis seems
to involve only several thousands of hosts. One possibléaaagion is that
bot-net operators currently still face command and coprablems that limit
bot-net activity [83].

Traditionally, bot-nets are slowly built up, until they degge enough for
their intended purpose. An alternative approach is to uastdriternet worm
to quickly compromise a large number of hosts and carry oaitittended
attack a short time later. An Internet worm is a piece of sgflicating code,
that replicates not locally, but remotely on other hostsheale over the In-
ternet. Typically, this requires a security compromise lom temote hosts,
since most networked software refuses to execute unregliestle that was
sent to it over the network or otherwise places strong iegiris on it. If, for
example, a massive Distributed Denial of Service (DDoSjchtis planned,
the attack code can then be part of the worm code and the atacke trig-
gered at a specific time. This neatly avoids the command antiaddssues
and at the same time makes tracing the originator of thelattaer, at the
price of far lower flexibility. Examples of well-known fastternet worms are
the Blaster worm [37], the Witty worm [115] and the Slammenrmd73].
The first known (slow) Internet worm is the Morris worm [96]hieh had its
initial outbreak on November 2, 1988.

Worm propagation can involve user activity. For exampleakmrorms
often need active attachment opening by the user, in ordexptoit a local
vulnerability. Propagation can also be fully automaticthwio user interac-
tion needed, but at the cost of more elaborate exploit coddeamer suitable
vulnerabilities. Since user interaction is typically qu#low and can delay
infection of a host by hours or longer, fast Internet worntg oa vulnerabil-
ities that can be exploited in a fully automated fashion.t Fagrnet worms
that have been observed so far have managed to compromisesapdral
hundred thousand hosts in a matter of a few hours [37]. Sogmifly faster
infection speeds are a real possibility [98].

Complete host compromise is not required in order for a fobetuse-
ful as part of an attack. Application compromise is enoughloag as the
application in question has network access. An attractivget are P2P file-
sharing applications [106], although in the past worms hgypécally ex-
ploited vulnerabilities in basic operating system servjcgich as the RPC
(Remote Procedure Call) port mapper, and in server soffvgaich as web-
servers [37,73,102,115].

1.1 Detection: Selectivity is the Key 3

This thesis tackles the problem of detecting fast Interrmtwg early in
the propagation phase and on high traffic-volume networksh as Internet
backbones. Internet backbone networks typically deliveffit between a
large number of hosts and consequentially offer a more gloafiic view,
compared to access-networks. This reduces misdetectiseddy localised
DoS attacks and scanning activity. At the same time, backimetwork sta-
bility can be at risk by worm propagation traffic as well. Arrlgaletection
capability is a valuable tool for operators of these networkhe main focus
of this thesis is on creating a computationally cheap detdot fast Internet
worms, that is reliable (i.e. has a low number of false possj, fast (i.e. de-
tects worms early in their propagation phase), capableabftime operation
and suitable for use on very high traffic volume networks.

1.1 Detection: Selectivity is the Key

Anomaly detectors in general, and in particular those ihéeinto be con-
nected to a network with high traffic volume, have to be selednh what
they trigger on. Building a general backbone anomaly detdtiat works
on traffic intervals with a length in the minute-range or lengs easy: It just
needs to output the “something detected” state for eachmtatal. Usually,
an anomaly, for example a port-scan, will be present at argngime, result-
ing in a very low false-positives rate for such a detectoiigtesThe rate of
false negatives would be zero by construction. For obvieasans this type
of detector is completely useless.

One problem is that unspecific detection alone is of limitatle in a
defensive network monitoring setting. Alerts have to bedusedetermine
actual risk created by the anomaly. For example, an attaaksiga type of
system that is not installed in a specific network carriey vew risk and
typically does not require countermeasures. On the othwt,lmassive scan-
ning activity directed to a specific port, that is used by aisercritical to a
specific network, deserves high attention and may requineddiate action.
Presently, determining the risk caused by an anomaly dagslysnvolve
a decision by a human being at some stage. Before this stagdetection
result needs to be specific enough that the number of falsts asesmall.
Otherwise the number of messages can cause informatiolvasigrroblems
for the human operator. The human operator needs to havelemiention
and concentration left to be able to read and recognisearigvents with
little delay.

4 1 Introduction

A second problem is that unspecific anomaly detection is f Mtle sci-
entific value. Again, evaluation of network traffic anomal@epends on the
type and intensity of the anomaly. Very low intensity scaignifor example,
is strictly speaking an anomaly, but is prevalent enoughitiiarms part of
the normal traffic profile. The only thing that can be done witispecific de-
tection is anomaly counting. However, since one high iritg@gomaly can
easily have orders of magnitude more impact than a low iitieasomaly,
these counts have very little meaning.

For this reason, it is necessary to build detectors for §ipetyipes of
anomalies, that do not trigger on other types. In fact, tlegudency of a
detector to trigger on the wrong type of anomaly, thus gdimgra false pos-
itive, becomes one of the primary detection quality measuF®r the same
reason, if a detector is capable of detecting several typesmamalies, its
detection quality and usefulness can only be judged reaspagter the de-
tection results have been split into the different typegedifferent anomaly
types carry different levels of importance.

Of course, specific anomaly detectors can be combined in&tesk of
detectors for specific applications. If, for example, a metnis vulnerable
to flooding-type DoS attacks and to fast worm propagaticen th combined
detector can be used for overall alerting, and the humaratperan then be
provided with the specific information on whether a DoS &taca worm
was detected.

This work aims to provide a detection mechanism for fast sicenin-
ternet worms, but no other anomalies. Fast Internet wormaminteresting
subject in their own right, since they can have a massivetiveganpact, not
only within their intended purpose, but also as a side-&tfae to their prop-
agation activity. Currently, no other mechanism besidsesIfernet worms
can compromise hundreds of thousands of Internet hosts e haurs or
even less time, without previous network activity that cbgive early warn-
ing. Fast Internet worms represent a significant threat eédnkernet, even
if the observed number of incidents is relatively low. Withhe set of fast
Internet worm models, we will be able to distinguish difier& CP/UDP port
profiles and scanning intensities. We will also conductetecalibration on
different worm models.

We will use a computationally cheap detection approach,ataws de-
ployment of a larger number of differently calibrated iridival sensors, even
for very fast networks. The computational effort will bedar in the number
of sensors used, with a very small constant. In order to dstrate efficiency

1.2 Anomalies During Worm Outbreaks 5

and a low false positives rate, we will evaluate the detedé&sign on a sig-
nificant set of unsampled and not anonymised network data &enedium
sized Internet backbone, spanning half a year. The data ltamed from
SWITCH (Swiss Academic and Research Network, [6]) as pati®@IDoS-

Vax project [35]. The SWITCH network carried around 5% of alliSs In-

ternet traffic in 2003 [75]. The DDoSVax project uses unsaalow-level

representation data of all SWITCH border routers for reseptoposes, for
example for worm detection, detection of DoS attacks andsomeanents of
P2P (Peer to Peer) traffic generated by file sharing appicsti

1.2 Anomalies During Worm Outbreaks

Any working worm design has one central characteristic:hBafected host
tries to infect several others. This results in a one-toyntamnection profile.
If the worm cannot determine in advance which connectioisheisuccess-
ful, most of the ensuing connection attempts will be unsssité and hence
introduce an asymmetry into the network traffic: A smallemiver of IP ad-
dresses (the ones of infected hosts) will be seen more oftleie a larger
number of IP addresses (the target addresses) will be séeorare or a few
times. This change is comparable to the pattern seen whéetstasning is
performed from a small number of hosts to a large IP addresgera

In addition, the infection traffic has specific charact@&swith regard to
port numbers, as typically the attacked vulnerability mtérget system needs
connecting to a specific TCP or UDP port. During a worm profiaggphase,
the specific port is then seen as a target port in more netwmrkextions as
usual. Unlike the IP address profile, there are (rare) vahiéties that do not
need a specific target port, for example because the attagjainst a part of
the network stack directly. An example is the vulnerabilised by the Witty
worm [115], were a specific flaw in a firewall product was usear the
source ports, a worm implementor has the choice of usingiahtearof fixed
source port. Both choices have been seen in deployed worfarimeptations
[37,73,102,115].

The described effects may have a significant effect on thegnof the
IP address fields and port number fields found in captured ddtes thesis
will show that for worms with a high enough scanning intenéiastworms)
the entropy changes can be used to build a practical detehairis both
accurate and efficient enough for deployment in networksyray a high
traffic volume. It will be demonstrated that both fast detectand a low

6 1 Introduction

number of false positives can be obtained simultaneouslyeahnetwork
traffic gathered from a medium sized Internet backbone rmtwo

1.3 Problem Statement

The central claim of this thesis is that it is possible to thaildetector for fast
Internet worms based on entropy characteristics of baakbraiffic observed
only at flow-level. This detector can detect fast Internetm® early, has a
low rate of false positives and low resource needs.

Demonstrating that this central claim holds, requires almemof engi-
neering and scientific contributions to be completed sisfalg. In detail
these are the following:

Design, build and operate a NetFlow data capturing system fahe
SWITCH network (Engineering)

In order to obtain the basis data for this research, we ateatgystem for
capturing, transport and storage of the SWITCH NetFlow dAtathe time
this work was started, SWITCH used the router-exported degars only for
real-time monitoring tasks, such as generating trafficmastatistics, but no
short- or long-term storage was done.

Design and implementation of NetFlow data processing libraes and
tools (Engineering)

No NetFlow processing tools suitable for our purposes weadable. We

needed batch processing capability for large datasets,aMibcus on statis-
tical and other analyses. Therefore we created our ownsgtolhat works
primarily on files of NetFlow v5 datagrams. Processing ofdats that ex-
ceed days or weeks of captured data is possible in an effisi@nivith this

tool-set. It also serves as a basis for other work on thedt®Y¥ITCH data,

see Chapter 8 for a selection.

Creation of a worm simulator to better understand worm
characteristics (Engineering / Science)

In order to better understand the impact of worm parameigeh 8s, for
example, worm code size, scanning speed and infection,detaygreated a

1.3 Problem Statement 7

simulator that allows us to study these effects. A centrabjegm we solved
was how to model the Internet realistically with regard tamgropagation
simulation.

Model the entropy-effects of fast Internet worms theoreticdly (Science)

We created a theoretical model that explains the impact ofmaautbreak
behaviour on flow data entropy characteristics. This moel®es as a basis to
explain and understand what effects are to be expectedgdunt@rnet worm
outbreaks and facilitates the search for them.

Identify and quantify the effect that the outbreak of a fast Internet
worm has on NetFlow dataset entropy scores (Science)

In order to allow the design of an entropy-based worm detgstostudied the
effects of real worms on NetFlow data entropy charactesstThis involved
both measurements on real data as well as theoretical altiggry. This gave
us conclusive insights into the actual entropy-relate@atéf of fast worm
propagation.

Evaluate the suitability of compression for entropy estimaion (Science /
Engineering)

Since calculating sample entropy for backbone traffic dagarhemory inten-
sive task, with memory needs dependent on the traffic volaata, compres-
sion was evaluated as a possible alternative method fanatstig entropy
characteristics of flow-level traffic data. We found that goession forms
a valid alternative to sample entropy. Compression hadfiigntly lower
resource needs and a slightly higher rate of false positives

Design a detector for fast Internet worm outbreaks based onmtropy
measurements and evaluate its characteristics (Science h§ineering)

We designed, implemented and evaluated a detector forrfessnet worms.
The detector was evaluated on real traffic data. A focus ofetfsduation
was on the detector calibration method, and on the numbedsé positives
generated for different calibrations on a significant portof the SWITCH
traffic data. We found that the detector can deliver bothyedetection and

8 1 Introduction

a low rate of false positives. This is the case when using Easmropy and
when using entropy estimated by compression as basis.

1.4 Thesis Overview

Chapter 2 gives an overview of related work in the areas afreypdetection,
entropy estimation and worm detection, as well as worm sitianl. Chap-
ter 3 focuses on worm traffic and its specific characterisfiasget scanning
strategies are discussed and our approach to simulating wapagation in
the Internet is presented. In Chapter 4 we discuss the cootemtropy,
important properties for our work and which parameters offlevel traffic
data are suitable for an entropy analysis. The chapter &giglith some ex-
amples of observed entropy changes during worm outbredlesmiin focus
of Chapter 5 is the possibility to estimate entropy. We discdirect esti-
mation by observed frequencies and estimation by comresg\ quality
and performance evaluation of the different possibilitiegiven. Chapter 6
presents an entropy based detector design that is reaktpable. The de-
tector works on time-series, i.e. data is separated inésvats and detection
is done for each whole interval. In order to demonstratetth@tpproach is
effective, Chapter 7 presents validation measuremengsfiwopy estimation
by compression on flow-level traffic data from the SWITCH bauid net-
work, as well as detection results and evaluation of falsgtipes on half a
year of recorded SWITCH traffic data. The scientific part o$ thiesis con-
cludes in Chapter 8, where the accomplishments are revietivedelevant
publications written as part of this thesis are presentetpmssible direc-
tions for future work are given.

The engineering contributions are documented in the Apperd Ap-
pendix A documents the libraries and tools created as thevaad infras-
tructure for NetFlow data processing, that served as this fasmost mea-
surement work done in this thesis. We describe design dgscttechni-
cal solutions, performance figures and briefly compare opragezh to other
tool-sets. Appendix B briefly describes experiences made avi_inux clus-
ter of 24 PCs that was created as part of this thesis to sethe ggocessing
infrastructure. Appendix C describes the data capturirdysaorage system
and the specific problems encountered together with thkitisns. A special
focus is fault-tolerant operation, since the data captusiystem is intended
for multi-year continuous operation. The SWITCH network lisoabriefly
described.

Chapter 2

Related Work

In order to set the playing field, we will now review a selentiaf the rel-
evant results and publications. Note that in most casegiandl literature
references can be found in the relevant chapters.

2.1 Fast Internet Worms

One of the first to recognise the immense threat worms aretimtarnet is N.
C. Weaver who coined the term “Warhol Worm” [114] for verytfasorms.
This work is extended in [97].

Many past fast Internet worms have been analysed in detaimples are
the Code Red worm variants in [34, 80, 121], the Blaster warfd 2,17, 37,
39], the Witty worm in [90, 93, 104, 115] and the Nachi worm 11 [13, 44].
In [123], Zou et al. analyse different scanning strategigisable for fast
Internet worms with regard to their performance, similasitand differences.

2.2 Worm Simulation

Generally speaking, the Internet is difficult to simulatgomd overview can
be found in [42]. One problem is that the Internet traffic mipanges rela-
tively fast. For example P2P (Peer-to-Peer) traffic, ofterfifesharing appli-
cations, forms a major part of todays Internet Traffic [58]18ut was not a
major concern a few years ago. An other problem is that ge#timoverview

10 2 Related Work

of the current Internet topology is difficult, even if the sgeof the individual
connections is ignored, because this would require olstgidetailed infor-
mation from every backbone operator and every ISP on theepl&till, with

a narrow focus the task becomes easier.

2.2.1 Modelling the Internet

Simulating the spread of a worm on the Internet requiresrpatiasation for
the worm and the Internet, including vulnerable host pagpurta infection

speed and so on. The choice of these parameters directlgisipe level of
realism a simulation has. It should be noted that the retdvéernet charac-
teristics change over time. Each set of parameters is validfor a specific
time period.

The Simple Epidemic Model

A first approach is to use a simple epidemic model, that isrpatased with
the population size, the vulnerable population, the nundferontacts per
time unit and the infection probability. For worm simulatjathe infection
probability for a vulnerable target is typically one. Thadmet is not ex-
plicitly modelled and full connectivity between each pdihosts is assumed.
As a consequence, a realistic set of parameters can ggnembflbe derived
from observations of worm outbreaks in the real Interneremfmore com-
plex simulations or analyses. This limits the usefulnegbisftype of model
for research purposes. It is still well suited for demorigirapurposes. A
simulator that uses this model is [122]. An epidemiologgédzhsimulation
of the Code Red worm can be found in [121]. In [97], a variarnthefsimple
epidemic model is used to simulate worms with two scanningest, where
an initial hit-list scan is followed by a different scannistfategy once the
hitlist is exhausted.

The Last Mile Model

A more complex approach models the Internet by using speeédielay of
the last mile connections. The worm is modelled by its sceatesyy, the
number of bytes to be transferred for successful infectiwh lay the delay
inherent in a system compromise. These values are then aipadametrise
a simple epidemic model. The advantage is that once the abastics of
the worm are known and a certain last mile speed profile of nkernet is

2.2 Worm Simulation 11

selected, it is possible to simulate the corresponding wautbreak realis-
tically. This approach allows exploring the outbreak bébaw of different

worms under different conditions. The worm charactergstian be derived
from measurements in a test-bed or from more theoreticareasons. The
last mile Internet speed profile can be derived from Intemeasurements.
We use this type of model in our own Simulator and derive itapeetrisation
from global P2P filesharing application speed surveys. @n&p7 presents
the details and results.

The Scale-Free Model

A scale-free network is one where the distributions of thegrele of nodes
(i.e. the number of neighbours) follows a power law. Ba$ycthiere are few
nodes with a lot of neighbours and also many nodes that havedehbours.

There is a lot of work on worm propagation in scale-free neksgofor ex-
ample [21,67,79,113]. The basic problem is that, concgrgiabal scanning
strategies, for example random scanning, the Internetuidiyarheshed net-
work where every host can reach every other directly by uindP address
of the target. For this reason, the scale-free network muakebnly very lim-
ited applicability to worm propagation, unless the wormsuaeopological
scanning strategy (see Section 3.4.4).

Topological scanning works well for email worms, Instané$daging
worms and similar worms, that use a local address-book tckthrgets
for infection. However, fast Internet worms typically ussmdom target se-
lection, sometimes combined with an initial hitlist. It isreently unknown
whether topological scanning can achieve propagatioredspgomparable to
observed fast Internet worms. Primary requirements woeld tery fast lo-
cal search for targets, and the local availability of a lotasfjet addresses in
many cases.

Agent-Based Simulation Models

A third possibility is to actually simulate individual hesand network con-
nections between them. This can be done in an agent-baseelfak, where
hosts are stationary agents sending each other messagpsasant infection
attempts. Hosts are initialised with their probability ®ibfected and a time
until they start infecting others as well. The worm is itsretiag and exploit
profile with regard to data transfer size and needed exclsaoegr the net-
work. More complex parametrisation is possible, for exalprobability

12 2 Related Work

for an infection attempt to crash a host or a possible mixfédint operating
systems with a similar vulnerability that have differemnitig characteristics
when exploited. This Internet model also allows simulatidrfaster local

connections and, if Internet topology is added, simulatboongestion ef-
fects. Itis very resource intensive and simulations mayeHhawbe restricted
to a fragment of the Internet size or a maximum number of \nalple hosts.
It is also difficult to obtain realistic parametrisationanfnation with regard
to the required level of detail. This type of Internet modalsed for example
in [118].

The Internet as a Test-bed

The most realistic option is to replace simulation with theeinet as the test
bed. Typically this is done using generation limited worrstamces. The re-
sults provide current and realistic viability informatiabout a specific worm
design and also serve to test a concrete implementatiors afigroach has
the advantage of no simulation error, but is completely xilfle with regard
to exploration of different scenarios. In addition, it cesisignificant dam-
age, is unethical and typically criminal and therefore is a@alid research
option. It is however frequently used by worm authors. Erikeof this are
outbreak-like traffic patterns that have been observedshoudays before
large outbreaks of fast Internet worms in the past. An exaroah be found
in [37].

2.3 Anomaly Detection for High-Volume
Networks

Anomaly detection in Internet Backbone networks is diffitaidcause of the
amount of traffic involved.

2.3.1 Black Hole Sensors

A way to deal with these problems is to operate a "black hotgiser. This
type of sensor does not monitor backbone traffic, but ratiafic to a large
unused address space. Black holes detect traffic directaddom addresses
or to a fraction of all Internet addresses that includes thekbhole. Host
scans and systematic searches for specific vulnerabilitiessts often cause

2.3 Anomaly Detection for High-Volume Networks 13

this type of traffic. Black holes can also detect backscdttdfic, for ex-
ample caused by responding packets to flooding attacks witbfed source
addresses. A black hole is typically implemented by usinguéar configura-
tion that redirects all packets addressed to a specific asldamge to a single
machine. This machine counts and classifies the traffic, bes dot answer.
One example of a large black hole is the CAIDA [26] black haliso used
for worm analysis [2, 90].

An variant of black hole sensors is a white hole installatidhworks
similar to a black hole, but in addition has a countermeasapability. For
example, malware that doesportance scanning.e. tries to identify the dis-
tribution of a host population with a specific vulnerabilitgd then prioritises
its attack activity accordingly) can be slowed down usingte/holes [49].

2.3.2 Connection Counting

It is possible to build sensors that rely on a connection iograpproach,
where the number of outgoing and incoming connections oft afskosts
is monitored. This approach causes relatively high effirice state has to
be kept and maintained for each monitored host. A secondhdreinis that
both directions of each network connection have to be availavhich is not
always the case in a backbone scenario, due to asymmetticgou

An early approach is the Network Security Monitor [52]. 1011 hosts
are classified into different classes callednnector Respondeand Traffic,
that correspond to hosts that initiate a lot of connectidrase a lot of in-
coming connections and have both, respectively. This ifieestson is then
used for anomaly detection and can, for example, be use@mdifgd network
worms and email worms that send email directly from the cammised hosts.

2.3.3 Origin-Destination Flows

Origin-Destination (OD) flows are a method in general tradfialysis, and
have been used for highway traffic patterns, flows of goodsgistics, migra-
tion patterns, and other applications, where traffic ogggs in a set of points
and goes to a set of points. It is based on estimation theagy [&¥]). The
traffic flow is individually measured for each pair of (OrigDestination) and
the results are represented in matrix form. This matrix ¢em tbe used to
estimate normal flow activity by different methods, for exdenleast-square
estimation.

14 2 Related Work

In [58] authors apply OD flows and Principal Component AnalyBCA)
to the problem of detecting general network anomalies. Tiese this, they
use network entry points as origin as well as destinatiorsantimarise traffic
by calculating sample entropy scores for port and IP addielsis. The re-
sulting four sets of sample entropy values are each put iseparate matrix
per 5 minute measurement interval. In a second step, a majtisubspace
method is used to estimate a traffic characteristics basetinomalies show
up as multi-dimensional deviations from the baseline. THanaalies are then
clustered using unsupervised learning. ldentifying thieimeaof the anoma-
lies in a cluster is done manually. Measurements given if {&8nd 444
traffic anomalies in three weeks of Abilene data, contaididdalse positives
and 64 events that could not be classified by manual analygésted worm
traffic could also be detected. Abilene data is sampled at &fdl00 packets
and the last 11 bits in IP addresses are zeroed.

In [95] the authors show that OD flows are superior to input liggre-
gation and input router aggregation as traffic data aggmyatechanism for
traffic data from the Abilene and GEANT networks. GEANT traffiata is
sampled at 1 out of 1000 packets. In [87] the sensitivity oARQ network
traffic anomaly is examined. One identified problem is thattlamber of
false positives in PCA-based detection is very sensitivéinieensionality of
the normal subspace and the threshold calibration. Thisceslthe problem
of over-fitting, especially when measurements are done laively small
sets of data, for example traffic data from only a few weeksoskovation. A
second problem is that large anomalies can contaminateotineah subspace
and may not be detected as a result. Measurements in [87]deersusing
one week of data form the Abilene and GEANT networks. It isleachow
well the measurement results and the OD approach transiéneo networks
and what impact sampling and anonymisation have on the fisdin

2.4 Worm Detection

A lot of work has been done on worm detection in the recent pa$89], the

authors describe a fast detector for scanning worms in loetslorks. It uses
sequential hypothesis testing to identify infected hoSt&lorD [38] is a fast
worm detector based on a counting algorithm and intended tesbd on the
network edge. It keeps a list of each host that has raiseqtiatteby gener-
ating scan-like traffic. An approach based on detectorsdal loetworks that
uses a Kalman filter to detect exponential behaviour is desdin [120]. A

2.5 Entropy 15

distributed worm detector, that uses sensors on individasts is the subject
of [27]. Billy Goat [119] is an intrusion detector for corade networks. It

analyses traffic to unused IP addresses in order to idenfiégiion attempts.

There is also significant work on automated worm signatunegion using

honey pots. One example is [81].

2.5 Entropy

The fundamental reference for the concept of entropy inrimé&tion theory

is [91] by C. E. Shannon who defined the concept first. Infoiomatheoretic
entropy (entropy for short) intuitively describes how musicertainty is in

a data-stream, i.e. how much information (bits) are needeatkscribe the
variations in the data stream that cannot be predictedofyis measured in
bit/bit or bit/symbol. In digital computing bit/bit, i.e. anit-less measure in
the rang€0...1] is often used. If bit/symbol is selected instead, the symbol
set has to be described in order for the measure to be meahingf

Information theoretic entropy was inspired by the concéphéropy from
the second law of thermodynamics, first described by Ruddilis Emanuel
Clausius, a German physicist and mathematician, in 1858ugiis also de-
fined the concept of thermodynamic entropy in 1865. The skdaw of
thermodynamics intuitively states that energy spreadswdidisperses if not
specifically hindered to do so [59], i.e. in a closed systetaradn infinite
amount of time all the available energy is evenly distributethe available
space. This final state is regarded as having maximum entfidpy/connec-
tion to information theoretical entropy is that the evenigtidbuted energy
state may be seen as the space being filled with random “nolgefhfor-
mation theory, the signal from a source without memory tlzet &n evenly
distributed output over its symbol set also has maximunoggtand is basi-
cally “noise”.

Information theoretical entropy is closely connected ttadampression
in the sense that no lossless stream compressor can achievepaession
result smaller than the entropy of the original binary dataesn. The entropy
here has to be measured in bit of entropy per bit of data.

When compressing a fixed binary object, Kolmogorov compye68] is
the dual concept to entropy. The Kolmogorov complexity ofraaby object
basically describes the smallest possible representatiterms of the size
of the description of an algorithm that generates the objé&timogorov

16 2 Related Work

complexity can not be measured for a specific binary objecthat specific
object could be hard-coded into the language the algorighwritten in. On

the other hand, the average Kolmogorov complexity of an itefisequence
of binary objects is equal to the entropy of the sequence.

In [60] entropy was used to analyse audit data (e.g. sendoys) for
anomalies. The authors also analysed tcpdump data from laasroess net-
work at MIT. One of the main results is that entropy measwzad to a high
false-positives rate when applied to smaller data setsatitteors argue that,
for example, system call trace data on a target system is dae tikely to
detect a buffer overflow exploit being used than entropy datthe network
traffic.

2.5.1 Entropy Estimation

Entropy can be directly computed when the probability ofheandividual
symbol in a data stream without inter-symbol dependencies ¢enerated
by a source without memory) are known. The direct way to esgnentropy
is to assume independence and then estimate symbol pribpbbibbserved
frequency. This method is calledmple entropy

A second approach is to use data compression methods, irgeethat
the compression algorithm will achieve a compression retee to the (bi-
nary) entropy of the data. This method generally fails if¢his hidden struc-
ture in the data.

Current research on data compression mostly focuses ondosspres-
sion of multimedia data, exploiting imperfections in thasers (e.g. human
eyes and ears) of the final data consumer. These technigaemtiuseful
for entropy estimation outside of their specific field of apation and are
therefore outside of the scope of this work.

Work on estimating entropy has been done in other fields. xamele the
Entropy Estimation workshop at NIPS’'03 [76] deals with epir estimation
for use in fields like Bioinformatics and speech processiith & specific fo-
cus on sampled data. While compression methods have beéadstuthese
fields, the processed datasets are far smaller than in ok, Wwat usually
have significantly more structure so more complex estimati@thods are
used.

2.5 Entropy 17

2.5.2 Compression in Data Analysis

In [116] compression signatures of worm code are used tdifgevorm fam-
ilies. A worm family consists of worms sharing a significaattpof the same
code basis. The author also uses the method to do anomadstidet® ssh
connections and other types of network connections. Thé vgoextended
in[117].

In [105] the Authors apply data compression techniquesdeoto iden-
tify data clusters in fields as diverse as music, genetiesjogy, language
and others. The presented clustering techniques are demeaery to iden-
tify similarities between data subsets. The examples gisansmaller and
relatively strongly structured data sets.

Chapter 3

Worm Traffic

This chapter defines the notion of an Internet worm and dsssipropaga-
tion mechanisms and strategies. Except for the occasicaahgle, we do
not discuss specific worms in this chapter, only conceptsraechanisms.
Chapter 7 includes descriptions of several worms thataifytbroke out in

2004. Chapter 2 discusses relevant publications. We areapity concerned
with fast Internet worms, i.e. worms that reach initial sation (i.e. infection

of most vulnerable and reachable hosts) in a matter of hours.

3.1 Definitions

Note that definitions different from the ones we give hereifarese.

Definition 1 AnlInternet worm is a piece of self-replicating code that does
its replication over the Internet, i.e. the target is acasbsising a layer 3

or layer 4 protocol, typically TCP or UDP. In order to propatga the host
on which the worm code is executed (callefiécting host or infected hos)
contacts an other host (thtarget host) over the Internet, replicates its code
onto the target and triggers executiomfection) of its code on the target.
We will sometimes call the running copy of the worm code ortdlget a
child or child instance of the worm. All hosts that have the same number
of infection steps from the initially infected host(s) aatled an(infection)
generation

20 3 Worm Traffic

While in principle worms that propagate using the ICMP protawr us-
ing raw IP in some fashion (i.e. where the protocol field in ifRéeader is
ignored or not used) are possible, we are not aware of any svtitat use
these means to propagate.

A distinction that is sometimes made is between the notioa wbrm
and avirus. The idea is usually that a worm can propagate without user
interaction, while a virus cannot. We do not make this detton. In a sense
we allow the user to be part of the execution environment.his way our
definition includes email worms and other application wothet require a
user on the remote host to open an email attachment, for dgamprder to
trigger worm code execution.

Definition 2 A fast Internet worm is an Internet worm that infects most of
the vulnerable (reachable) host population in less thana da

We are aware that this definition is not too precise. Nonetisele are
not aware of a better one.

Definition 3 Theinitial outbreak (or just outbreak for short) of a fast In-
ternet worm is the time from its first infection over the Imgtruntil it reaches
saturation. Saturation is typically reached when around 90% of the vulner-
able host population that is reachable has been infected.

Again, the termsaturationis not too well defined. Intuitively it is reached
when the target selection strategy of the worm produceslynassuccessful
selections, since most vulnerable hosts have already béssted.

3.2 General Worm Mechanisms

Every Internet worm has to have a certain minimal functiitpéh order to
be viable:

e A worm has to be able to identify possible infection targets.
e A worm has to be able to transfer its code to a selected target.

e A worm has to be able to induce a vulnerable target to run testr
ferred worm code.

3.3 Infection Mechanisms 21

e A worm should be able to identify already infected targets gefrain
from re-infecting them.

Interestingly, the first three requirements are alreadyugho The fourth
merely improves efficiency. Also, if a service on the targestem is capable
and willing to propagate the worm without having its segucibmpromised,
then a worm can do without any kind of system compromise at all

A compromise of the target system to some degree is custamoagthe-
less, especially when some other purpose, like espionagdirgy of spam or
attacks on other systems is intended. A second reason f@t t®ystem com-
promise is that many worms use security vulnerabilitiesktaim resources
on the target system. The advantage is that in this way the é&eecution ser-
vices of the target system become available to the worm antlactionality
its designer wants can be easily implemented.

The typical worm uses a propagation mechanism that worksttiis:

1. Select a potential target
2. Attempt to contact the target

3. Compromise the targets security in some way to obtaingkeurces
to transfer and execute a copy of itself.

4. If more infections are desired, goto step 1

5. Do damage on the local machine or do damage somewheresatsge u
the local machine

The last step is optional and can also be done earlier. Hawieverder
for a worm to propagate as fast as possible, it is a sound mesigice to
not impair the functionality of an infected host until thenvohas completed
most or all of its intended propagation activity from thashdn addition, the
damage may be done later to delay the discovery of the worm order to
allow coordinated attacks from several infection generei

Note that we also regard data collection activities, suctoaking for
passwords or credit card numbers, as causing “damage”.

3.3 Infection Mechanisms

The primary requirement for propagation is, as stated,alhedrm can trans-
fer code to a target and induce the target to execute thateititla permission

22 3 Worm Traffic

level high enough that further propagation from the targgtdssible. Often
this is a multi-stage process: First the worm transfers aippiece of data,
that causes an initial execution of some worm supplied clrderder for this
to work, the worm has to useramote exploit, i.e. a vulnerability that can be
exploited over the network. The next steps will then be useskéecute more
complex code and optionally to achievgmvilege elevation i.e. execution
with higher privileges. For the latter, the worm needs to aikecal exploit.
i.e. a vulnerability that can be exploited locally and thatreases the level
of control that the worm has over the target host. We will ngtudss the
possible types of remote or local exploits here. Insteadefer the reader to
the literature as discussed in Chapter 2.

3.4 Target Selection Mechanism

Of primary interest to this thesis is the target identificatand selection
mechanism a worm uses, since target selection has by faathest influ-
ence on the actual worm traffic seen in the Internet duringudbreak. The
reason is that, while the target address may or may not bgreskio a host
and if there is a host, this host may or may not be vulnerabé&eworm code
has to select targets and then try to contact them. Thesecton attempts,
also calledscan traffic is the most visible sign of a fast Internet worm in its
main propagation phase.

3.4.1 Random Scanning

Perhaps the most simple target selection strategy is ptartjom scanning.
For this, the target selection code usually includes a RsBatidom Number
Generator (PRNG) or uses an OS service with this functignalnfection
targets are then selected by generating a 32 bit random manbeusing that
as the target IP address. In a more advanced setting, rdrege®tnot contain
normal hosts, such as multicast-addresses, can be excluded

Care needs to be taken, that the random target selectiorplsrimented
correctly. Interestingly, many worm writers seem to ges tirong [2, 73].
Mistakes include constant PRNG seeding after propagatise,of inferior
PRNGs with non-even value distribution and even PRNGs tiatat gener-
ate all output values and hence miss many possible targets.

3.4 Target Selection Mechanism 23

3.4.2 Local Preferential Scanning

Pure random scanning works reasonably well, but one disaalya is that it
does not take advantage of the better network connectwhgsts in the same
LAN or otherwise in close proximity. Local-preferentialasming is very
similar to random scanning, but it dedicates a portion ofstten activity to
addresses in the same subnet the attacking host is in. Tipjge@mentations
have preferences for the /24 subnet and the /16 subnet oftéokiag host.

One way to implement this type of strategy is to randomly soamore
often in the local /16 subnet, but to scan the local /24 sututigt The latter
can be done in a simple, linear fashion, although this mggéni IDS and/or
IPS system sensors.

Local-preferential scanning has several advantages. $xhatithe prob-
ability of actually finding hosts with addresses close todttackers IP ad-
dress is usually far higher than for randomly selected adg® After all,
the local subnet contains at least one host already, naimelyntected host.
This means that it is not an unused subnet. The second adeaistthat the
traffic over the Internet access and backbone networks iseet] Pure ran-
dom scanners run the risk of overloading the Internet aco@ssection and
thereby hindering their own propagation. A further advgates that the net-
work latency to hosts in close proximity is lower, leadingaster scanning
and infection performance.

3.4.3 Hitlist Scanning

A completely different approach to random scanning isstificanning. To
implement this strategy, the worm-designer precomputést aflvulnerable
targets. This list is then included in the worm when it is dgpld. The
worm then not only propagates its own code, but also partseofitlist to be
used by the respective child instance. Propagation scheittesome degree
of redundancy are possible. For example, each so far unasget address
could be propagated to two or several child instances of thienwso that
if a child instance cannot work through its list fragment gbately, some
other child instance may still be successful. With this tgpeedundancy the
individual copies should be worked through in differentenglto maximise
propagation speed.

The use of a hitlist scanner for the full vulnerable popuolafior a specific
exploit only makes sense if this population is relativelyaimOtherwise the

24 3 Worm Traffic

transfer of the hitlist will slow down the worm considerably second con-
cern is that the hitlist needs to be obtained in a way that doearouse sus-
picion. Otherwise the worm could find a situation were theeptill targets
have already been warned before its initial propagation.

A typical use of hitlist scanning is to have a relatively shhilist of very
attractive targets, e.g. hosts with high bandwidth or hiost are geograph-
ically well placed. The worm then does its initial propagatiwvith a hitlist
strategy and then changes over to another strategy afteoromdew infec-
tion generations, e.g. random scanning. For a good dismus$ihow fast a
hitlist-scanner could actually be, see [98].

3.4.4 Topological Scanning

Topological scanning bears some resemblance to hitlisirieg. However,
the information about potential targets is not precompubed instead ex-
tracted from the data available on the local host. Possiileces of IP ad-
dresses are ARP caches, contact lists of P2P applicatipas,laternet con-
nections, browser caches, address books of any kind andsatheces. Host
names and URLs can also be used since they can be converkedddresses
by DNS lookup. It should be noted that worms that do DNS lookilpgen-
erally be quite slow and likely not qualify as fast Internetrms according to
our definition.

One primary example of topological worms are email wormghaéuigh
they are notnternetworms by our definition, they represent a very important
class of application layer worms. Another class of applicatayer worms
are IM (Instant Messaging) worms, that have also been obdenvthe wild.
P2P filesharing could provide an equally viable platformdpplication layer
worms, but so far no P2P worms have been observed as to outddgmv

3.5 Port Characteristics

Scan traffic of a fast Internet worm has some limitations ow Bource and
target ports can be selected. These are different for TCRBiRIscan traffic.
We will now discuss the different possibilities.

3.5 Port Characteristics 25

3.5.1 TCP: Source Port

In ordinary TCP traffic, the source port for the connectidtiating host, i.e.

the host that sends out the initial SYN packet, is chosenrataa by the

network stack from a port range unlikely to be used as sergeisp Each

concurrent connection gets its own source port, so that emsgyvtraffic can

be identified by the port it is sent to. It is possible to drap tequirement and
match answering packets by remote IP address and port.sT i example,

done in servers that accept multiple connections on a spugte such as web
servers.

For a worm, it would be possible to use a static source porhaatdh the
answering traffic by remote IP address. However, this caaeitional effort
and does not have any real benefit. It also prevents the wanm @ising the
normal network stack, since the normal, OS integrated mitat@ack cannot
do this type of matching.

3.5.2 TCP: Destination Port

The primary limitation for destination port selection in anm is the exploit
used. If an exploit works only on a specific port, then all @itaaffic has to
be addressed to that port. In addition, the connectioratinity SYN packet
in a TCP connection is unable to transport data. Even if aipdgpendent
exploit was possible, the initial SYN would have to be serat pwrt where the
remote system sends an answer. With variable ports, the wourtd need to
do a port scan in order to find such an open port. This scan wsiovd the
worm down significantly. In addition we are not aware of anyPT€xploits
that can be used on a larger range of target ports.

For these reasons a worm using one or more TCP based expibits w
likely target one or a small number of TCP ports on the targstesn.

3.5.3 UDP: Source Port

Since UDP is connectionless, UDP based exploits can be amallyigre
single-packet exploits. This means the attacking hostsarsihgle packet to
the target host and is then either contacted back by the ssfodly executed
exploit code or has to do a second polling step. For both ngtithe UDP
source port is immaterial and can be chosen in an arbitrahjida.

26 3 Worm Traffic

3.5.4 UDP: Destination Port

As in the case of TCP, the target port for an UDP exploit depemthe actual
nature of the exploit. If the vulnerability is present in aéee running on a
specific port, the same rationale as for TCP destinatiors@amplies and the
target port will be fixed.

Unlike TCP, UDP permits transfer of data in the first packeitt.s& his
allows exploit code to be sent to random destination pairisesestablishing
a connection is not needed. In order for this to work, the sxdbility needs to
be in a service that processes all UDP payloads, such as afficava proxy.
For example, the Witty worm (see Section 7.2.2), exploitslaerability in a
firewall product and sends single attack packets to randagettports.

3.6 Expected Impact of IPv6

IPv6 offers a 128 bit address space [56, 86]. It is not quigarchow much
structure will be contained in addresses actually assigmédsts in the fu-
ture. For example only one eighth of the address space isrtiyrassigned
to global unicast addresses. Furthermore 64 bits may befosdédaterface
identification, e.g. to hold the MAC address of an Etherntriace. In case
of a 48 bit MAC address, there are significantly less than #8djfirandom-
ness in these 64 bits, although the structure is not verylsinftill we ex-
pect that random scanning will be ineffective with wide agphent of IPv6.
One possible way around this problem is topological scapasdiscussed
before. In fact, topological scanning is already in use bwiémorms and
seems to work reasonably well for them. It remains to be seandifective
such mechanisms are and whether worms can achieve faspptapaspeeds
under IPv6 without resorting to large hitlists.

3.7 Simulating Worm Traffic

As part of this work we examined the possibility of simulgtimternet-wide
worm traffic. The results have been published in [110]. Wé dékcribe and
briefly discuss them now. The simulation code and implentemta@ocumen-
tation is available from the author of this thesis upon rastue

3.7 Simulating Worm Traffic 27

3.7.1 Why Predict Worm Behaviour?

The benefits of predicting worm behaviour are numerous:

e Better understanding of the behaviour of worms observelarpast

Estimations of a worm’s threat potential

Estimations of the impact of future worms on the Internet

Forms a basis for the design of worm detection mechanisms

Determination of parameters relevant for worm characaéds

Traffic Prediction

Traffic prediction for the worm spreading phase helps tovestie the decrease
in performance of an affected network. Slow spreading wonmght not
even be visible in traffic monitoring tools as they are wetlden in regular
traffic variations. However, if specific characteristicsaofform are known, a
detection might still be possible.

Speed Prediction

The Sapphire worm infected more than 90% of all vulnerablstin the
Internet within 10 minutes [73]. Since manual interveni®too slow to deal
with this, there is a need for semi- or fully-automatic totilat detect and
analyse a spreading worm and activate countermeasurearmaa-time.

Threat Evaluation

Given that modern worms have the potential to infect mostenable hosts in
the Internet within a short time, these worms pose a reaathoethe Internet
infrastructure. It is important to determine what the poiisies and limi-
tations of this attack tool are in order to concentrate ceuméasure efforts
towards the most vulnerable places.

3.7.2 Worm Characteristics Relevant for a Simulator

A worm writer basically implements the following process:

28 3 Worm Traffic

1. Identify a vulnerable host
2. Compromise the target host
3. Transfer the worm and activate it

For some vulnerabilities all these steps can be combinedaisingle network
packet, as was done in the case of the Sapphire worm. Foispthersteps
have to be done separately.

We believe that for the study of worm propagation a very alostview
of these steps is sufficient. Steps 2 and 3 can be modelled escaange
of a specific amount of data with a specific protocol and optidime de-
lay, i.e. disregarding the concrete nature of the vulnéitghised for target
compromise. Step 1 is a little more complicated, but cah lstilmodelled
disregarding vulnerability details.

TCP vs. UDP

The main choice in the transport protocol is whether it ismation-oriented
or not, for simplicity, this is represented by TCP and UDR: Worms that
infect a distributed application, like a P2P system, othedets might be
needed [106]. The protocol used is usually directly deteettiby the vulner-
ability that is exploited by the worm.

In the case of UDP, resource consumption in the attackingisasnall.
A typical scenario is to send out UDP packets to random hastite keeping
very little state information for each target, or none aifathe attack can be
executed by sending a single UDP packet. Disadvantagelsatrhe size of a
UDP packet is constrained to around 50 kihd data packets with a payload
larger than 1472 Bytes will be transported using IP-fragtason.

Use of TCP causes additional effort for connection estalent and er-
ror handling. On the plus side there is no data size limit. fflost significant
disadvantage of TCP is that a connection attempt to a naiiegihost fails
only after a long timeout and consumes OS resources untkeisdThere are
ways around this, but they require that the worm implemési@wn modified
version of TCP, which makes worm design more difficult andeéases worm
size.

1This is OS dependent. We found that e.g. Solaris has a limitrat&0 kiB, Linux a little
higher. 64 kiB is the definite protocol limit.

3.7 Simulating Worm Traffic 29

Amount of Data Transferred

The time a worm needs to propagate after a vulnerable tasgebéen iden-
tified depends mainly on worm size and available bandwidtidi#onal de-
lays may be present, e.g. if a reboot of the attacked hoseidatk Data trans-
fers form a specific signature of a worm and can be used foctietepur-
poses. Obviously, a large worm will generally propagateificantly slower
and far more visible, so worm writers will often aim to writeall worms.

Scanning Strategy

The scanning strategy is the method used to select the nsixtchioe probed.
See Section 3.4 for a discussion of the possible options.

Latency vs. Bandwidth Limit

Even though the Code Red | and Sapphire worms both used raswiming,

their propagation speed was different by several ordersagnitude. The
number of Sapphire infected hosts doubled initially evefysconds while
the Code Red Iv2 worm population had an initial doubling tiofi@bout 37

minutes [73]. The reason for this difference lies in the chaif the transport
protocol and in the size of the transferred worm code.

The Sapphire worm uses a single UDP packet with a total siz&)4f
bytes. Since there is no connection establishment with WEPspreading
speed is mostly independent of latency but strongly deperatebandwidth.
An infected host can send as many infection packets as Mgnetink and
protocol stack allow.

Code Red uses TCP, which implies the use of a three way hakelsha
for connection establishment. As a consequence, latentheisnain limit
on propagation speed. In addition OS constraints limit tivalper of paral-
lel connection attempts that can be made. Latency limitedngacan also
become bandwidth limited when their scanning traffic exsesetwork re-
sources. For Code Red this happened after about 15 hours.

3.7.3 Simulation and Alternatives

We will now discuss different ways to study the charactmssof a piece of
self-propagating code.

30 3 Worm Traffic

Mathematical Models

The most powerful approach is probably the creation of as@mathemat-
ical model that allows behaviour prediction in a closed fore with no or

very little iteration. The problem with this approach isttkach models are
not generally available and are usually hard or even imptessd create.

Testbeds

Testbeds allow to actually run self-replicating code in swoldted and lim-
ited environment so as to observe its behaviour. The mosbosvimit of

a testbed is that it cannot be created in a size approachagite of the
Internet. Another serious problem is that a testbed needsédoreal self-
propagating code, which is difficult to obtain. There ar®dgal and moral
problems with creating and handling such code.

Real World "Experiments”

If a testbed is too limited, why not use the Internet itself?il/tvorm code
authors certainly take this freedom, this is not an optiansfaentific study
because of the damage potential. In a very limited sensestnefithe whole
Internet is possible, namely in observing the behaviour offms that have
been set free by people not hampered by ethical considesatigve have
observation equipment in place in a moderately sized baekibetwork to
observe the next Internet outbreaks. See Appendix C foilsleta

Simulation

In a sense simulation is a mathematical model in which sontfgedfunctions
used rely heavily on iteration. In order to reduce compateti complexity,
abstraction and approximation of the inner mechanisms efttject stud-
ied is often used. This allows computation of functions thi not well
understood in a mathematical sense. The analytical appafanathemati-
cal modelling is replaced with an experimental approackhich scenarios
are simulated and then analysed. Simulation is often a \féegtve tool to
understand complex processes.

A significant drawback of simulation is that due to abst@cthe simu-
lation results can differ significantly from real behaviaifthe system under
study. A way to verify and optimise simulation accuracy isitoulate events

3.7 Simulating Worm Traffic 31

that have been observed in the real system and compare sonwatputs to
the measured data.

3.7.4 Simulator Design

The main component of the simulator is a script written in.Pre simulator
can be started from the command line. It was developed uniderx] but

should run under most Unix-like operating systems withoatlification. It

first reads the parameter values and then opens two plot wsdbthespeed
plot shows the number of infected hosts vs. time andrduéic plotshows the
total scanning and infection traffic vs. time. Plain textmuttis also available.
The simulator code is available upon request from the awthtivis thesis.

Simulator Structure

Our aim was to create a modular and flexible simulator thakeeaily be ex-
tended. We chose the scripting language Perl as basis fonfiiementation,
since it is well suited for rapid prototyping and is fast egldor our purposes
as our evaluation in 3.7.5 shows. Perl modules are useductiste the code
and to facilitate extensions. Plotting is done with gnupfopipe is kept open
to each instance of gnuplot and automaticaflyshed to generate an updated
plot when the simulator has finished a number of iteratiopsste

Internet Model

The Internet model is at the very core of our simulator. Weanlepking
for a model that is complex enough to represent prevalemachexistics of
today’s Internet. At the same time it had to be simple enoogingble effi-
cient simulations. Inspired by the Napster and Gnutella¢ti2iit connection
measurements in [88], we chose a model that disregards dpeies of the
hosts and focusses on the speed of the last mile connectiedisauss other
possible Internet models suitable for worm simulation iotlee 2.2.1.

Our chosen model divides the Internet imtdifferent groups of hosts
that belong to sub-networks with similar characteristié&&ach host group
has two defining parameter&sandwidthand latency The bandwidth and
latency of a connection between any two groups are chosdreasihimum

2This can be done in Perl by usirsglect(G); $| = 1; , with G being the handle of the
pipe.

32 3 Worm Traffic

128 Kbpf)|

300 ms bandwidth: 128 Kbps 1 Mbps
128 Kbps 300 ms 100 ms
latency: \

300 m

64 Kbps bandwidth:
128 Kbps
1ooom 300 ms I;tx\té@?

100 m

64 Kbps
1000 ms

bandwidth:
64 Kbps
latency:

Q 1000 ms

64 Kbps
1000 ms

1 Mbps
100 ms

3 Mbps
60 ms

Figure 3.1: Example of a configuration of our Internet model

64 Kbps
1000 ms

bandwidth:
3 Mbps
latency:
60 s

bandwidth and maximum latency of the groups. Figure 3.1 sheow-group
configuration of the Internet model that is used in our sinmulaDetails of
the host distribution can be found in Table 3.1. We also sigelca 10-group
configuration, given in Table 3.2. The average bandwidthhgst in Table
3.1is 1157 kbit/s for Napster and 1544 kbit/s for Gnutelta, fable 3.2 it is
1176 kbit/s.

The given percentages are measurements from [88] and atkahtbe
user population of Napster and Gnutella are representtivitbe whole In-
ternet. The measurements were done in May, 2001. The diffescbetween
the Napster and the Gnutella numbers show that this apprisacbt very
accurate. Still these are the best figures we were able to find.

The details of the underlying measurements as well as méoaiation
on host characteristics in the Napster and Gnutella P2mhéitesy systems
can be found in [88]. For continued usefulness of the modgtlaa simulator
these numbers will have to be updated from time to time.

Our Internet model turned out to be powerful enough to siteutaany
cases of worm behaviour. Still for some cases modificatiomeweeded to
get realistic results.

The model could easily be extended to support asymmetrinexiions
in order to simulate ADSL or Cable modem connections thatefample,
in some European countries have a downstream speed thao i téour

3.7 Simulating Worm Traffic 33

| Bandwidth | Napster| Gnutella] Latency |
64 kbit/s 32% 10% | 1,000 ms
128 kbit/s 5% 14% 300 ms
1 Mbit/s 38% 38% 100 ms
3 Mbit/s 25% 38% 60 ms

Table 3.1: Internet models with 4 groups

times faster than the upstream speed. Also, the TCP slowlsthaviour
is not modelled. However, as most worms are of rather s, $i could
be represented by choosing a lower bandwidth than the &ctardilable
bandwidth.

The nature of our Internet model is well suited for a quatitiéeanalysis
of worm spreading, however it is not suited for traffic preidic for a specific
host.

| Bandwidth | Napster| Latency |

14.4 kbit/s 4% | 1000 ms
28.8 kbit/s 1% | 1000 ms
33.6 kbit/s 1% | 1000 ms

56 kbit/s 23% | 1000 ms

64 kbit/s 3% | 1000 ms

128 kbit/s 2% | 300ms
256 kbit/s 44% | 300 ms
512 kbit/s 14% | 100 ms
1.544 Mbit/s 5% 60 ms
44,736 Mbit/s 2% 60 ms

Table 3.2: Internet model with 10 groups

Implemented Worm Parameters

Table 3.3 provides an overview of all worm and Internet patams imple-
mented by our simulator and gives their value range.

34 3 Worm Traffic

Worm parameter Unit Lower | Upper

limit limit
Hosts in the Internet hosts 1 232
Vulnerable hosts hosts 1 Internet hosts
Start population hosts 1 vulnerable hosts
Simulation time span seconds 0 no limit
Transport protocol TCPorUDP | — -
TCP resend on timeout| enable/disablg — -
TCP timeout milliseconds | O no limit
Worm size (w/o header)| bytes 0 65535
Parallel scans (TCP) or| — 0 no limit
scans per second (UDP
Additional time to infect| milliseconds | O no limit
Hitlist enable/disable — -
Hitlist length hosts 0 Internet hosts
Hitlist vulnerability - 0% 100%

Table 3.3: Simulation parameters

Implemented Scanning Strategies

The simulator implements three different scanning stiaggeghamelyRan-
dom Scanningvith even distribution Hitlist Scanningwith a user-defined
hitlist andLocal Forced Scanninthat scans local IP addresses with a higher
rate than remote addresses.

The effect of hosts being already infected during worm stireais taken
into account by reducing the success probability of an tidaattempt:

. vulnerable hosts- |infected host
P(infect) := | al :105|t$ b (3.1)

For each time step the simulator sums up itifection probabilities as
defined in (3.1), for each host scanned to determine the nuofheewly
infected hosts. An error is introduced here because twangegmosts could
select the same target in a time step. This error is smallagsds the number
of vulnerable hosts is significantly lower than the numbetotdl hosts. For
simplicity, expression (3.1) is used in the simulator.

3.7 Simulating Worm Traffic 35

Output and Reporting

The simulator produces a text file that describes all parmnvatues for the
simulation, as well as numeric data files suitable for Gnuplput. In ad-
dition, the graphical plots are displayed and updated os¢heen while the
simulation is in progress.

Traffic: The traffic plot shows the total traffic generated by the stann
and propagation of the simulated worm over time.

Spreading Speed:The spreading speed plot shows the total number of
infected hosts over time.

Simulator Limitations

The simulator assumes an even distribution of the vulnerhbéts over the
different speed groups. The Code Red worms attacked matallat®ns of

the 1IS web server with the owners of the hosts not even aweag were

running a web server, because 1IS had been installed asffmttey software
packages. Accordingly, the vulnerable hosts were pretgnigvdistributed

over all speed groups. However, if a worm targets an appicdhat is only

installed on hosts that are specifically designated as rserihee vulnerable
hosts will tend to be in the faster groups.

Countermeasures by network and host operators are not leddelthe
simulator. The effects of such countermeasures will vagvite depending
on human behaviour and technical parameters and hence iy ba mod-
elled reliably.

3.7.5 Impact of Internet Model

The Internet model serves as an approximation of the reatriat. Since
precise overall Internet bandwidth and latency figures ateawailable, the
model also serves as a method to estimate bandwidth anayabased on
a limited observation of these characteristics in reakithisted Internet ap-
plications, in our case P2P filesharing. It turned out thatltiternet models
needed to be adjusted to some degree to obtain realistid¢agioruresults.

The Sapphire Worm

Sapphire is bandwidth-limited. Its propagation speed ighty linear with
the bandwidth directly available to the already infectedtho When a high

36 3 Worm Traffic

number of hosts have been infected, there can also be additimitations
because of ISP and backbone bandwidth limits. We assumenarable
population of 75,000 hosts.

Figure 3.2 shows a simulation graph obtained with the 1Qqgrimter-
net model from Table 3.2. The initially infected populatimas 100 hosts
distributed over the different speeds according to grome.sThe simulation
shows a significantly slower propagation than the observegggation speed
of the Sapphire in [73]. A likely explanation is that the Imtet became faster
since the Napster measurements were taken.

100000 T T T

10000

infected hosts

1000 | E

100 1 1 1
0 500 1000 1500 2000

time [sec]

Figure 3.2: Sapphire worm: Infection speed with original model

If the 100 initially infected hosts are chosen from the fastgoup and,
in addition, the fastest group is enlarged to 10% (takingngvieEom the other
groups) the initial doubling time is about 6 seconds and ¢heasing rate after
3 minutes is about 50 million per second, giving a very rougbraximation
for the observed Sapphire worm behaviour. The simulatien tleaches an
infection level of 90% after about 275 seconds, as can beisdégure 3.3.
Figure 3.4 shows the infection traffic for the adjusted modietan be seen
that the lack of fast hosts causes the propagation speedsttbbexponential.

From these experiments we conclude that the initially it€fe@opulation
(obtained via hitlist or pre-infection), while criticalfthe propagation speed,
need not be large. 100 fast vulnerable hosts are probabjytedind. From

3.7 Simulating Worm Traffic

37

infected hosts

traffic [bps]

100000 T T T T T T T

10000

1000

100 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

time [sec]

Figure 3.3: Sapphire worm: Speed with adjusted model

le+12 T T T T T T T

le+ll

le+10

1e+09 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

time [sec]

Figure 3.4: Sapphire worm: Traffic with adjusted model

38 3 Worm Traffic

there on plain random scanning is quite effective.

To demonstrate the possibilities of the simulator, we g@e more ex-
amples. The parameters are the same as for the second simaladve. Fig-
ure 3.5 shows the Sapphire worm with 15,000 vulnerable hadte worm
now needs about 1030 seconds for a 90% infection degreed@&hisnstrates
that UDP worms with random scanning can still be used fotixelly small
vulnerable populations.

100000 T T T T T T

10000 E

infected hosts

1000 | E

100 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

time [sec]

Figure 3.5: Sapphire worm: 15,000 vulnerable hosts

Figure 3.6 demonstrates the effect of an infection lateforyexample a
reboot after infection, here chosen to be 100 seconds.tiafeaf 90% of the
vulnerable hosts now takes about 660 seconds, which shatvewbn with a
significant infection latency the worm is still quite fast.

Code Red

To validate our simulator’s results for TCP-based wormstriegl to approx-
imate the behaviour of Code Red Iv2. Therefore we combined ffam
different analyses in order to choose the most accurataredeas for our
simulation. The plot by CAIDA [74] as shown in Figure 3.7 wased as a
reference to estimate the simulator’s accuracy.

For the simulation we assumed 360,000 vulnerable hostk (Bhié TCP
timeout of CodeRed Iv2 was set to 21 seconds ([121]) and thebeu of

3.7 Simulating Worm Traffic 39

100000 T T T T T T

10000

infected hosts

1000

100 1 1 1 1 1 1
0 100 200 300 400 500 600 700

time [sec]

Figure 3.6: Sapphire worm: 100 sec. infection latency

Code Red Horm - infected hosts
468088 T T T T T T T

258888 |

208888 |

258080 |-

EELELENS

infected hosts

15ee0a

100000

Sagae

2 L L L L
B0 08 B4:08 Bg: 08 12: 08 16108 20:08 oa:ag o4:00

87 19 e 8720

Figure 3.7: Code Red Iv2: Measurements of infected hosts by CAIDA

40 3 Worm Traffic

parallel threads sending out scanning packets was set t¢ [8l)). TCP
resending was disabled and a time step of 1 sec for the sioiaas defined.

400000 T T T T T T T

350000 [B

300000 [b

250000 [b

200000 [y

infected hosts

150000 - b

100000 —

50000 [b

0 1 1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000

time [sec]
Figure 3.8: Code Red Iv2: Infection speed simulation

Our results for the number of infected hosts against timaguse 4-
group (Napster-based) model are shown in Figure 3.8. Thesebi match
the reference plot. Figure 3.9 superimposes both figureaw &or easier
comparison. The log scale plot in Figure 3.10 shows the expiial increase
in the number of infected hosts nicely.

The simulation plot does not show the effects of counternmesput into
place by network and host administrators that are preseGAIDA'S plot.
The arrow in Figures 3.7 and 3.9 marks where countermealsagisto affect
the worm'’s propagation speed.

Finally in the traffic log as shown in Figure 3.11, it can beated that at
the saturation level of 360,000 infected hosts, a trafficoofghly 0.5 GBit/s
is generated. Each host accounts for roughly 1.5 kbit/s @pafallel threads
on each host send TCP SYN packets within each 21 secondautimnéerval.
The fluctuations in the traffic shaping stems partially frohigh synchroni-
sation of the hosts due to a fixed time reference for all hostsir simulator.

A simulation of CodeRed Iv2 with the 10-group model showely oeg-
ligible differences to the 4-group case. A decrease of Ced&Rvorm size
to the size of Slammer showed only a slight decrease in thergead traf-

3.7 Simulating Worm Traffic 41

400000 T T T T T T T

350000 [B

300000 [b

250000 [b

200000 [y

infected hosts

150000 - b

100000 [—

50000 [b

0 1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000

time [sec]

Figure 3.9: Code Red Iv2: CAIDA vs. simulation, CAIDA graph scaled and
shifted right for better visibility.

le+06 T T T T T T T

100000

10000

1000

infected hosts

100 | E

10 4

1 1 1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000

time [sec]

Figure 3.10: Code Red Iv2: Infection speed simulation, logscale

42 3 Worm Traffic

6e+08 T T T T T T T

5e+08 - B

4e+08 —

3e+08 |- -

traffic [bps]

2e+08 |- E

le+08 B

0 1 1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000

time [sec]

Figure 3.11: Code Red Iv2: Traffic simulation

fic. This is not surprising, as the rather large worm code pnbpagates to
vulnerable hosts and hence most of the traffic is caused ynsaaother
hosts.

Simulator Performance

Simulator performance varies widely with the input pararetWe did most
of our experiments on an AthlonXP 2200+ under Linux 2.4.hwitime reso-
lution of 50ms for the UDP simulations and 1 second for the §tiulations.

For UDP simulations we observed a simulation runtime bel©®#o 2f
simulated time for a 4 group model. With a 10-group model aNaimula-
tion time was still lower than simulated time in many casesigh infection
latency time is the one factor that significantly slows tlsidigwn, since more
state has to be kept. Reducing the time resolution dralstispeeds things
up, this allows for a balance between accuracy and perfaemaie believe
that simulator performance is good enough for many apidicat

The Perl-based implementation allows for easy modificafiamneed to
simulate additional effects arises. We feel that this fldikjtis more impor-
tant than the benefits of a faster implementation with a cadganguage.
The simulator presented here is not suitable for a simulatidh a large

3.7 Simulating Worm Traffic 43

number of host groups, that, for example, model individuddrets. In ad-
dition, we are not aware of speed and topology statistidsabald be used
as a basis of such a model. Even if they were available, wé that Inter-
net topology is too unstable for such a detailed model to staple without
frequent and possibly costly updates.

Chapter 4

Entropy in Worm Traffic

Worm outbreaks in the Internet change the observed traffic he main

reason is the worm scan traffic, that is generated in the lsdarchosts to

be infected. Actual infection traffic plays only a minor rofince most con-
nection attempts do not result in successful infection andlly fo not even
reach a valid target address. The scan traffic is most pramolim random
scanning worms, where potential targets to be infectededeeted at random
from the Internet address range. See Chapter 3 for a momegtirdiscussion
of observable worm traffic.

4.1 Observable Worm Traffic Parameters

For the DDoSVax project, the primary observed data is in €iNetFlow

[9, 28, 29] format. For the purpose of worm observations this means that
mainly flow information, i.e. source and destination IP &ddes and ports,
as well as flow length in packets and bytes, are the primaryjaila data.

In addition, the data is pre-aggregated into flows, i.e. inedtional packet
streams from a source IP address/port pair to a destinaficadtress/port
pair. In a sense a flow forms a “communication” event, pogditaving a
second flow as a closely related event, if the communicasidndirectional.
Failed connection attempts are often unidirectional, antsists of a single
flow.

1see Appendix C for a discussion of the captured data preseatid the capturing system.

46 4 Entropy in Worm Traffic

As it turns out, the parameters most influenced by worm traffec IP
addresses and ports, where entropy in particular changeslimaracteristic
fashion. Volume metrics, such as byte counts, packet cantglow counts
are of minor or no use, since they are very sensitive to (D)Bitéks, flash
crowds and other non-worm network events.

4.2 Entropy

Entropy for the purpose of this thesis means informatiomrbigc entropy
as defined by Shannon [92]. The name “entropy” is inspiredthtissical
thermodynamics, where entropy refers to the amount of fded in a ther-
modynamic system. While thermodynamic entropy is not a stilgéthis
theses, a good summary of it can be found in the Wikipediaglartin en-
tropy [40].

4.2.1 Intuition

Information theoretic entropy, or information entropy &bort, describes the
expected information in a symbol emitted from a symbol seufidhe source
is state-free, i.e. each symbol has a (static) specific pitityeof being emit-
ted that is independent of the history of emitted symbolse easure of
entropy is bits/symbol and intuitively describe the minmmexpected aver-
age number of bits needed to describes a symbol the sourte emi

On an intuitive level, this is equivalent to the problem oteding the
symbols of an infinite symbol sequence individually so thatleast number
of bits per symbol are used. The symbols in the sequence aéed¢ global,
independent occurrence probabilities for each positigh@symbol stream.
This also prompts the intuition that entropy is related ttad@mpression and
forms a limit of the best case performance per-symbol datspcession can
reach.

For example, the entropy per symbol corresponds to the geesygmbol
size in bits generated by (static) Huffman coding [54, 55wdver, Huffman
coding has to use integral bits, while the true entropy mmeagear symbol is
a real number. It turns out that the maximum error is justisbioone bit per
symbol, see Section 5.2.1.

Most other compression schemes assume and use inter-sgiegesiden-
cies. In real-world situations these generally exist, st #mntropy based on

4.2 Entropy 47

per-symbol probabilities is not necessarily a lower sizertabfor a compres-
sion result. Still, the general intuition that entropy pgm&ol corresponds in
some form to the average bit-size per symbol produced bysacdapression
algorithm is valid.

4.2.2 Definition

Definition 4 Entropy according to Shannon is defined in terms of a random
event x with possible outcomes. . ,n with an associatediscrete probabil-

ity distribution P = ps,...,py. Here, p is the probability of outcome i. P
fulfils 0 < pi < 1andy pi = 1. Then the entropy of event x is:

H09 == 3 plioga(p() [0

H(x) is the entropy of a single event. When dealing with a serieseaf s
tistically independent events produced by a procesgh distributionP for
the individual eventdH (x) is the entropy per single event. It is often useful to
associate a symbol with each possible outcome and regardridem event
as a process that produces one or a sequence of symbols.

Outcomes with zero probability do not contribute to the epyr How-
ever, the above definition is customarily extended to alloent as well where
the zero values are treated as lingts> 0 with € > 0. Sincee-logy(€) — 0
for e — 0, € > 0 ande - logz(€) is continuous when extended by the limit at
position 0, this is unproblematic.

logz(pi) is also called thesurprisal of the outcoma. This makedH (x)
the expected value of thmurprisal of the outcome ok. Since entropy is not
influenced by which specific outcome has which probabilitg, also write
H(P) for a discrete probability distributio® as defined above, instead of
H (x).

A further refinement is possible if the symbol stream is casgut of bi-
nary encoded symbols of a fixed, known number of bits per synebg. a
stream of IP addresses or TCP port numbers. In thatldéBg can be stated
in units of bit/bit, taking the number of bits into accounatteach symbol
is encoded with. This is the form mostly used in this thesiea@ly a sym-
bol encoded inta bits cannot have more thanbits of entropy, hence the
possible value oH (P) is in the range &< H(x) < 1 bit/bit.

48 4 Entropy in Worm Traffic

4.2.3 Properties

One of the most important properties of entropy for this ithéesthat it in-
creases when the observed data pattern becomes more ranelothe ob-
served symbols have a more equal probability of occurrinige ihverse is
true as well. Formally:

Theorem 1 Let P= py,..., pn be a discrete probability distribution, with
n>2 Letwo.lgp<py. Letfurther P= (pp—k p2+k,...,pn) fora
real number k> 0 with 0 < p; —k and p+ k < 1. Note that P’ is also a
probability distribution. Then:

H(P) > H(P)
Informally: When the probability distribution P becomesdeven, then HP)
decreases.

Proof: Itis enough to show the inequality only for the first two terimshe
sum forH(), since all other terms in the sum remain unchanged and
hence do not influence the claimed inequality.

The proof requires two steps. First we show
—(P1-10g2(p1) + P2-10ga(p2)) >

((P1—Kk)-10g2(p1) + (P2 +K) - 10g2(p2)) 1)
=
p1-10g2(p1) + p2-10g2(p2) < (P1—K) -10g2(p1) + (P2 +K) -10g2(p2)
=
0 < —k-logz(p1) + k- l0g2(p2)
=
k-logz(p1) < k-loga(p2)
=

logz2(p1) < logz2(p2)

We have O< p1 < p2 and hence the last line is true because the loga-
rithm is strictly monotonicly increasing arkds positive.

For the second step we use Gibb’s inequality [46, 47], dueotiah
Willard Gibbs (1839 - 1903). Gibbs inequality states thattfeo dis-
crete probability distribution® = (qa,...,qn) andR= (r,...,rp)

H(Q) = iqi -loga(ri)

4.2 Entropy 49

with equality exactly whem; = q; for alli € {1,...,n}.
We still need to show that

—((p1—K) -1ogz2(p1) + (P2 +K) - 10g2(p2)) >
—((p1—K) -1ogz(p1 —K) + (p2 +K) - logz2(p2 + k) (2)

But this follows directly from Gibb’s inequality by choogjiQ = (p1 —
k7 P2+ ka p3) andR= (pla p2, p3) with ps = 1— p1— p2, or omitting
ps, if it were zero.

Taking (1) and (2) together gives the claim. O

Entropy also increases when the number of observed symiisaises.
More formally:

Corollary 1 Let P be as in the last theorem. LetR (p1 —Kk, ..., pn, k) for
a random event’xfor an arbitrary real value k> O with py —k > 0. Then

H(P) <H(P)

Proof: Note thatH(P) does not change if we add a zero probability event
to P, i.e. replace it byP” = (py,..., pn,0). Now remember that zero
value probabilities in the definition of entropy are reallyits € — 0
with € > 0, i.e. we can usB” = (py, ..., pn,€). This allows us to apply
the previous theorem in reverse.

O

4.2.4 Changes During Worm Outbreak

One property of normal Internet traffic we observed in the S@HTtraffic
data is that it is mostly symmetrical with regard to a “sendtado” relation.
For most packet-streams sent from hasb hostB there is some answering
packet-stream fronB to A. This observation holds both for TCP and UDP
traffic. On a flow-level this means that for a flow-record ddsog traffic
from A to B, there usually is a flow-record describing traffic fr@dnto A.

A typical example is a successful TCP connection, where doaffic flows

in both directions. This observation does not hold for theoam of data
sent. For example, in P2P filesharing, the SWITCH network iogiger, i.e.
much more P2P data flows out of the SWITCH network than int@#,[51].

50 4 Entropy in Worm Traffic

Note that this thesis splits observations of traffic prapsrinto four
classes of traffic, namely TCP, UDP, ICMP and other traffice fiain focus
of our observations is on TCP and UDP traffic. One effect i$ &mlCMP
“destination unreachable” as an answer to a TCP “SYN” mightrbssed.
However, experiments have shown that a TCP “SYN” to an |IPesiin the
SWITCH network will typically either resultin a TCP “SYN ACKdr receive
no reply at all.

The traffic symmetry is not perfect. In the SWITCH traffic date see
more active external IP addresses than internal ones. Adlypbur during
the day in 2004 had traffic from around 800’000 external IPrasges, while
only around 200’000 internal IP addresses were found todféctisources.
This is likely due to IP-range scans, such as manual scaass §om residual
worm populations, scan-like traffic from P2P filesharinguts in their start-
up phase and other scan sources. SWITCH has about 2.2 miliaddresses
in their address range, and a major part of the random scasityacemains
unanswered.

Note that traffic symmetry is not present at all if volume rstri.e.
packet counts and byte counts, are used. In addition, teeteff a worm
outbreak on volume metrics is typically very minor and ndtale for de-
tection purposes.

IP Addresses

During the outbreak phase of a random scanning worm, therflonchanges.
On one hand, massive random scanning activity can be oluiseMest of
these connection attempts remain unanswered and the flalgenomes de-
cidedly asymmetric. The effect is that the entropy of thgeaiP addresses
in the observed flow data increases noticeably. This is lsecenany more
target IP addresses are seen, which all get one or very fews Sent to them.
This causes an increase in the entropy of the flow target IlPeaddields.
In addition the target IP probabilities become more evensicey additional
entropy increase.

On the other hand, some (few) infected hosts start to styaraitribute
to the source IP addresses seen, since they generate acaigin@mount of
the overall flows seen. This leads to a less even probabilityilolition for
the individual source IP addresses, but at the same timeutmber of dif-
ferent source IP addresses remains mostly the same. THistiean overall
decrease of source IP address entropy in the observed flafig

4.2 Entropy 51

These two effects have different direction, since the dtams from
worm infected hosts are mostly unanswered. Otherwise ardse or de-
crease in entropy of the IP fields might be visible, but noetdléhce between
source and destination IP addresses would be present.

Note that these effects are very weak and usually remaimitile noise
threshold for entropy in packet headers. The aggregatiail glackets be-
longing to a connection is really needed to see the entropngds during
worm outbreaks.

Ports

With regard to ports, the effects are conceptually simbat,can take differ-
ent forms. It depends on what port characteristic the dontisean-traffic
component has. Both source and destination ports in sefficttan be fixed
or random. For source ports this is mainly an implementattoice. If the
OS network stack is used by the worm, source ports will beaanftom an
area in the higher port numbers. For destination ports ted agploit limits
what characteristics can be used. Typically the destingiart is fixed, but
not necessarily so. See Chapter 3 for a more detailed disouss

By the nature of entropy, random port values in scan-trafficédase the
observed entropy, while fixed values decrease it. In theredesef any major
attack, SWITCH flow-level network traffic has roughly oneflrahdom port
numbers (selected by the network stack on the connectitiating side as
source port) and one-half fixed ports (the well-known porttfe service on
the other side). Unanswered port-scans increase the raresnn the ports
seen, P2P traffic with fixed ports on both sides can decreasaniount of
randomness in the port values. Overall the normal port numiiopy has a
value that still leads to a noticeable entropy increase oredese (depending
on the worm characteristics) during the outbreak of a fastriet worm.

4.2.5 Observation Examples

We will now illustrate the entropy effects with two examplbsth taken from
the SWITCH network data. For easier comparison we use a akstaling
of bit/bit in the plots, i.e. bit of entropy per bit of data ump instead of
bit/symbol, i.e. bit per IP address or port number. With #bitiscaling the
possible entropy range is Q 1.

52 4 Entropy in Worm Traffic

1.2*10"6 ‘ ‘ ‘
flows to 135/TCP per 5 min

1.0*10%6

8.0 * 10”5

6.0 * 1075 -

4.0*10"5

2.0 *10"5

suspected outbreak time (16:?5

0.0 * 10”0
11.08. 11.08. 11.08. 11.08. 11.08. 11.08. 11.08. 11.08. 12.08.
08:00 10:00 12:00 14:.00 16:00 18:00 20:00 22:00 00:00

Date and Time (UTC, 2003)
Figure 4.1: Blaster worm: Flow count

0.6
------- "
5 osf |
% A ,,"| Am ot n N e
o 041 |
<
i}
: V‘/\/\W
g 03f)
o
< outbreak
o 0.2 |
source IP——
destination IP--------
0.1 h !)

Il Il Il Il
11.08. 11.08. 11.08. 11.08. 11.08. 11.08. 11.08. 11.08. 12.08.
08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Date and Time (UTC, 2003)
Figure 4.2: Blaster worm: |IP address entropy (TCP traffic)

The first example is the Blaster worm [12,17,61]. First obsdron Au-
gust 11th, 2003, Blaster uses a TCP random scanning stratittgfixed des-
tination and variable source port to identify potentiakiction targets. Blaster
is estimated to have infected from 200’000 to 500’000 hostddwide in the
initial outbreak. A flow count for the Blaster worm outbreak seen in the
SWITCH network can be found in Figure 4.1. This count is from thuters
swiCE1l andswiCE2, see Appendix C. Figure 4.2 shows the changes in the
IP address field entropy on flow level during the initial oells. As ex-
pected, the source IP address entropy falls, due to a smaiheber of hosts
(those infected) starting to generate a large fraction efdhserved flows.

4.2 Entropy 53

0.9
0.8
0.7

0.6
0.5

04} -
03F |

02+t - .]

o
Al

m vma A LR PN -

Port Field Entropy [bit/bit]

0.1f source port

O Il Il Il Il
11.08. 11.08. 11.08. 11.08. 11.08. 11.08. 11.08. 11.08. 12.08.
08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Date and Time (UTC, 2003)
Figure 4.3: Blaster worm: Port field entropy (TCP traffic)

900000 T T
800000} flows from 4000/UDP per 5 min
700000
600000
500000
400000
300000

200000+) b
outbreak time (4:4
100000

O Il Il Il Il Il Il
20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03.
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Date and Time (UTC, 2004)
Figure 4.4: Witty worm: Flow count

The destination IP address field entropy increases, beoauselP addresses
are observed (due to random scanning) and the probabititsitalition of the
individual IP addresses becomes more equal, since a largioin of the ob-
served flows goes to randomly selected targets.

The port field entropy changes are shown in Figure 4.3. Sirast&
uses an exploit on port 135/TCP, this target port number istemt. As a
consequence, the target port entropy in the observed tfalficsharply after
the outbreak, since a single value starts to become muchfregrgent. Since
Blaster uses the OS network stack, the source port is chaselomly from
arange in the higher port numbers. As a result, the entroflyea$ource port
fields in the observed flow data increases.

54 4 Entropy in Worm Traffic

0.6
S 05p B
o !
2 - /
9 0.4 fuemmerm="" Ayem =N mm s e T et et n
= W
|
@
g o3f T ,
o
=}
< outbreak
o 0.2 B
source IP——
destination IP--------
0.1 Il Il Il Il Il Il

Il Il Il
20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03.
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Date and Time (UTC, 2004)
Figure 4.5: Witty worm: IP address entropy (UDP traffic)

0.8 T e .
0.6

0.4

Port Field Entropy [bit/bit]

0.2

source port
‘ destinat‘ion port-‘ -------

outbreak

0 | |
20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03.
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Date and Time (UTC, 2004)
Figure 4.6: Witty worm: Port field Entropy (UDP traffic)

The Witty worm [90, 104], first observed on March 20th, 20@&4aigood
second example, because it has some unexpected chatasteitty at-
tacks a specific firewall product. It uses UDP random scarfsfixeedsource
port andvariabledestination port. Witty infected only about 15’000 hosts. A
plot for the count of Witty generated network flows in the SWH Getwork
can be found in Figure 4.4. This count is also from the rougef€E1 and
swiCE2 , see Appendix C. The IP address entropy changes for Witbyysim
Figure 4.5 are similar to Blaster, if different in magnitudde changes in the
port address fields of the observed flows, however, are gxaetlopposite of
the observations for Blaster, since Witty fixes the sourag od varies the
target port.

Chapter 5

Entropy Estimation

Assume we have a symbol stream emitted from a (real) sourde individ-

ual symbol probabilitiep(i) are known, and they do not depend on the other
symbols in the symbol stream, then entropy can be directlysarcurately
calculated using the definition from Chapter 4. Usually tymlsol probabil-
ities are only known beforehand when the symbol stream ithegised or
produced by a well understood process. For our purposdsendstthe case.
Hence we need methods to estimate the entropy in a symbahstre

5.1 Direct Entropy Estimation

The most direct way to estimaté(x) for a given, finite symbol sequenge
over the symbol set,1..,n, is to estimate each individual symbol probability
p(i) by its actual number of occurrencé®) in the sequence, divided by the
length of the symbol streahfx). This gives the following estimation for the
per-symbol entropy:

i((l 0} [bit]

The main source of errors on this type of estimation is thatsymbols
probability for different positions are often not indepentlin practice, and
this approximation method will yield a value that is too krgObtaining a
more accurate measurement for this case would entail cangpindividual

56 5 Entropy Estimation

symbols into larger ones to capture the interdependendg drity works if
there is a maximum distance over which symbols depend on atheln. If
there is no such maximum distance, other measures tharpgrare needed
for accurate measurement of information.

The computational effort for this type of estimation is detmed by the
effort of estimating the individual probabilities. Therg mo way around
counting how often each symbol is contained in the sequédntehis is also
enough. Hence we have the following algorithmic complexity

e Time: O(l (X))
The basic assumption here is that counting each streanmquokikes
constant effort. This is realistic, if arrays or hash-tabdge used to
store the individual probabilities. The constants are rieiteed by the
element-access effort for the table type used.

e SpaceO(n)
For each observed value we need one space unit to storegtsefrey.

In practice, the limiting factor is the table used to stoeegiimbol counts.
For example a hash-table used to store frequencies of IlRsskl has a per-
element memory need of 4 Bytes for the frequency and 4 bytelkddkey (IP
address). Table-external collision resolution (e.g. wingi colliding table el-
ements in a linked list) typically adds another 4 bytes pemelnt for a pointer
and 4 bytes in the base table if a load-factor of around 1.8s3srmed. The
worst case storage need for such a hash-table (reached ken spoofed,
random addresses are observed) @8ytes= 32GB for table-internal col-
lision resolution and 16232Bytes= 64GB for table-external collision reso-
lution. This number may be prohibitively large. The releviigures for the
SWITCH data are discussed in Section 5.3.

5.2 Estimation by Compression

A second, more indirect approach to entropy estimation tieesonnection
between entropy and channel capacity. The intuition isttiete is no way
to push more bits of entropy per time unit through a specifanciel than its
channel capacity, while this limit can (theoretically) kached. Compressing
the input data stream or diluting it with redundant symbaesinot change
this limit. If a (theoretical) perfect compressor, that s all redundancy,

5.2 Estimation by Compression 57

is used on the original, binary encoded, symbol stream, wst et a bit-
stream that goes through the channel with the highest gessitiropy per
bit sent. Hence this compressed binary stream must havél\yexae bit of
entropy per bit used in the encoding.

This idea can be used to estimate entropy in a finite dataratrd-irst
compress perfectly and obtain the exact entropy as thetiresmumber of
bits. Then divide this number by the original number of hiteider to obtain
the original entropy inbit/bit].

The main source of error in this approach is that real conspresare not
perfect. Since we are mainly interested in relative conspariof entropy in
normal data and during a worm outbreak, this type of errooisnecessar-
ily a problem. One definite advantage of compression ovarctientropy
estimation, as discussed in Section 5.1, is that most maaempressors as-
sume that symbols are interdependent and will take thisdntmunt during
compression.

We evaluated different compression methods, all of thesléss, in order
to find one suitable for our purposes. We now briefly descridmhe&ompres-
sion method.

5.2.1 Huffman Coding

Huffman coding [54, 55] assigns a code word of variable sizeach binary
symbol to be encoded. It does so based on observed symbahjlities.
The code words are in a prefix format, which allows decodintpénabsence
of length fields. The prefix property does not impact code wendth. The
average number of bits needed per symbol in a Huffman enadatedstream
Xis

M) =~ 3 p()loga(p())] bitsymbol

This number is very similar to entropy, except that the nunabdits for
each specific symbol is rounded up to the next integral vale.only addi-
tional error introduced compared to direct entropy estiomes the rounding.
i.e. the maximum additional error is smaller thaitIsymbol If the proba-
bilities are all fractions of the form/2' with i a natural number, then Hi#)
andH (x) are identical. On the other hand the computational effartfaff-
man coding, even if only done to the extent needed to obtaitiput size,
is comparable to direct entropy estimation, since Huffmadireg first deter-

58 5 Entropy Estimation

mines symbol frequencies and then builds an encoding tresdh#pon these
frequencies. For this reason Huffman coding has not beduoageal further.

5.2.2 GZIP

The GNU zip compressor [50, 84, 85] is a well-known, well bithed and
standardised compression program and compression lilmatlye UNIX
world. GNU zip uses the LZ77 [62, 65] algorithm and binary frudn cod-
ing. This combination is usually referred to as the DEFLATIgoathm.
LZ77 works by keeping a ring-buffer with the most recentlgsalata. It
then tries to find the current symbol sequence in that buffdrraplaces it by
a reference-length pair if found. The ensuing stream ofimaigsymbols and
reference-length pairs is then further compressed wittirkluri coding.

GNU zip is a stream compressor, i.e. each byte in the comguiedsta
stream can depend on any or all bytes in the uncompressedtdagm up
to that point. The compression performance of gzip is avenagll regards.
It compresses reasonably fast and achieves reasonableassion sizes. A
comparison on the raw data relevant for this thesis can bedfau Section
5.3.

5.2.3 BZIP2

The bzip2 compressor [24, 25] was first publicly releasedully 1996 as
version 0.15 by Julian Seward. Today bzip2 has reachedovedsD3 and
has been production-stable for many years. Currently hizip@®ed, e.g., to
compress Linux kernel source packages before distribution

Different from gzip, bzip2 is a block-compressor. It takesiireen 100kB
and 900kB (depending on parametrisation) of input data amipcesses it
into a block of output data. The output data block is not ddpeton any
previous data compressed. If a bit-error occurs in the cesgad data, only
one block of input data is lost.

The first compression step done in bzip2 is the Burrows-Wheelas-
form [22, 23] which transforms repeated symbol sequendessiequences of
identical letters. It then performs a move-to-front tramsf [8, 16] in order
to condition the data for a final step of Huffman coding. Coesgion perfor-
mance of bzip2 is very good, but it is slow and uses a relatiaebe amount
of memory. See Section 5.3 for a performance comparison th@hother
COMpressors.

5.3 Performance and Scalability 59

5.24 LZO

The LZO [7, 66] compressor family was created by Markus F. XOBer-
humer. LZO stands fotempel-Ziv-Oberhumerlt is another variant of the
Lempel-Ziv algorithm. The GNU command line tool that enadates the
LZO library is calledizop.

LZO is primarily optimised for very fast decompression aretywlow
memory consumption. Compression speed can be varied beteeg fast,
with a low compression factor, to relatively slow and congide to gzip in
compression factors. We are primarily interested in the lco@pressor in
its fastest variant. Again, see Section 5.3 for a perforraaenparison with
the other compressors.

5.2.5 Compression Comparison Example

An example that shows the compression performance of tlee ttifferent
compressors side by side can be found in Figure 5.1. The pws the
compression ratio changes during the Witty worm outbreattf®destination
IP fields on flow level for the gzip, bzip2 and LZO compressoespectively.
The y-axis gives the relative compressed size, i.e. a vdlueQomeans no
compression at all, 0.5 means the compressed data tookshaifieh space
than the raw data, etc..

It can be seen that the three different plots are shiftedoadiit against
each other, in a way that is consistent with the expected oessfon perfor-
mances of the three compressors. However, the shapes gramdar, as is
the change during the outbreak. This supports the expewtdtiat while the
compression ratio is very dependent on the compressor cisaadges in com-
pression ratio are less dependent and, even more impgrttmlreaction to
strong changes in the input data caused by a worm, is onlylwdakendent
on the compressor used.

5.3 Performance and Scalability

In order for an approximation method to be viable, it has teelsome sig-
nificant advantages over other measurement methods. Fopgmstimation
by compression, these advantages are both in speed and yneaeais.
Table 5.1 gives the maximum memory needs for the differempres-
sors. For the compressors, these numbers are absolute® arod depend

60 5 Entropy Estimation

1 T ;
| destination IP: Izo
095 destination IP: gzip -
0.9 | destination IP: bzip2- - - -

2
3

[hd

c

S

s T 1
? 0.8 ; T
& 075} i , T
o 0.7} 1
& . e e L

B 0,65 o)
E 0.6 ko)

0.55 ‘ ‘ ‘ : ‘ ‘ ‘

20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03. 20.03.
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Date and Time (UTC, 2004)

Figure 5.1: Witty worm: Compressor comparison

on the input data processed. These needs are per compregaoce. While
bzip2 uses a moderate amount of memory, the memory needsphgd
especially Izop are very small.

For comparison we give the memory consumption to be expdotezh-
tropy estimation by direct frequency estimation (i.e. dsuor the different
values) in Table 5.1 as well. The number given assumes a utimeak sit-
uation with around 60 million flows per hour and measuremenfminute
intervals. We also assume the use of a hashing method ttethamed col-
lision resolution (colliding elements are placed into &éid list) and a load
factor around 1.0. This leads to 16 bytes of memory per olksesource and
destination IP address. Thashed _table data structure, described in more
detail below and in Appendix A, has these properties. Pantsle counted
with far smaller memory effort, an array with 256kB size iffisient for both
source and destination port.

Using internal collision resolution and direct elementate, it would be
possible to reduce the number of bytes needed per elememt toa min-
imum of 8 bytes. This would however reduce the table speestidedly,
because the number of collisions would increase drambtiaatl secondary
collisions (collisions happening as a result of collisiesalution) would be-
come a concern. In practice, a table with internal colligiesolution would
only be filled to a load factor significantly smaller than 1This in turn in-
creases the memory needed and the size advantage shrirdesives.

5.3 Performance and Scalability 61

Note that the worst case memory consumption for direct pgtestima-
tion by frequency counts is directly dependent on the nurabows seen in
each measurement interval. The worst-case assumpticat slkhP addresses
seen are different. On one side, this means that the worstisasually not
reached during normal operation. On the other side, the punififlows can
increase dramatically during an attack. For example, alsii@jgN-flooding
attack with randomly spoofed source IP addresses placegelbad on the
table used to estimate source IP address entropy. As a aersss] a large
amount of memory needs to be kept available for the countiggrithms
usage in order for it to be of any use during attacks.

Table 5.2 shows the relative CPU times needed in order to czsaall
four fields of interest for a typical hour of data, containB@million flows.
The measurement is for 5 minute intervals without overlapcah be seen
that even the slowest compressor (bzip2) performs a latiféisan necessary
for real-time operation on the SWITCH data. The fastest cesgor (LZO
in its 1zo1x-1 variant) is fast enough so that in a real-tirrasor the main
bottleneck will be transferring the data into memory.

For comparison we also state the time needed for directnéstimation
by estimation of the value frequencies. The measuremernes again done
using thehashed _table data structure described in more detail in Appendix
A. It can be seen that direct frequency counting is compearabCPU needs
to the slowest compressor we evaluated.

| Method | Memory needed per data stregm
bzip2 7600 kB (fixed maximum)
gzip 256 kB (fixed maximum)
Izolx-1 64 kB (fixed maximum)
direct frequency counts 60 MB (at 60 mill. flows/hour)

Table 5.1: Entropy estimation memory needs (worst case)

Since CPU load is comparably low for all approaches, memecpines
the primary concern, at least on the SWITCH data In additiotin¢osignif-
icantly lower memory needs of the compression approaclgoatipressors
have fixed bounds on maximum memory needed. Direct entrapyatson
by counting value frequencies has an upper memory bounchdepéeon the
number of different values seen. This presents a potengakness in the
algorithm, which could lead to failure due to memory exhiumstn attack
situations.

62 5 Entropy Estimation

Method (Library) CPU time / hour

(at 60’000’000 flows/hour)
bzip2 (libbz2-1.0) 169 s
0zip (zliblg 1.2.1.1-3) 52s
[zo1x-1 (liblzol 1.08-1) 7s
direct frequency count 176s
(5 minute intervals)

Table 5.2: Average CPU time (Linux, Athlon XP 2800+)
5.4 Validation

Entropy estimation by compression is a heuristic approdtshprimary ad-

vantages are high speed and very low memory usage. Due teditstic

nature, its validity has to be demonstrated for each spegfitication, com-
pression algorithm and data set. In the last section, we dstraded its via-
bility as an entropy estimator for the purpose of detectasy fhternet worms.
We will now drop this restriction and examine the correspora® between
sample entropy and entropy estimated by LZO compression.

5.4.1 Basis Data

We explore the suitability of compression for entropy estilon, using Net-
Flow data from the SWITCH network (see Appendix C). The vdiaadata
spans the whole year of 2004, but is limited to the flows exgubhy the
routersswiCE1 andswiCE2 , which represents about half of the exported flow-
level data. The reason for this limitation is to avoid artéfathat result from
an overload in the remaining routewilX1 , during the observation period.

5.4.2 Estimation by Compression

We only consider the fastest compression method LZO heig.likely that
the other two compression methods will have comparablepaence. LZO
is the fastest compressor with the least resource usageshamdng that it
performs well is sufficient, since this removes the incesttito use the other
COMpressors.

Recall that the entropy value estimated by compressionvengas the
original size in bits of a (finite) symbol streaxdivided by its compressed

5.4 Validation 63

size in bits. We will call this estimation with the LZO comps®rH;o(X)
here. FormallyH,;o(x) is given by

siz€x) o
Hizo(X) = sizdizo(x) [bit/bit]

5.4.3 Entropy Measurement

We compare entropy estimated by compression with entropmated by
value frequency, i.e. against sample entropy. Recall trapte entropy uses
the number of occurrencegi) of symboli in data streanx, divided by the
overall number of symbolgx) in x to obtain an estimatiop(7) for the prob-
ability p(i) of symboli occurring, i.e.

This allows us calculate an estimatibifx) of the entropyH (x) by

A9 =~ 3 Blloga () [ivsymbel

In order to normalise this measure to bit/bit, we need toddivby the
symbol sizes as well. The symbol size is 32 bit for IP addresses and 16 bit
for port numbers. We get

H(x) = f% _i p(i)logz(B(i)) [bit/bitl]

We will show thatH,o(x) and H(x) are strongly correlated. The first
method used consists of scatterplots wth,(x) on the horizontal axis and

H(x) on the vertical axis. The second method uses the standaiatidevof

Hizo(X) — H(x). Both comparisons are done for the full 2004 data. TCP and
UDP flows are treated separately.

5.4.4 Linear Regression

Linear regression is a well-known statistical method ttzat be used to de-
termine a linear relationship between the first and secontpooent of a set

64 5 Entropy Estimation

of two-dimensional coordinates. Its first result is a lineegi as
y=a+bx

werea andb are constants. The line describes the estimated linearorela
between the coordinates. The second result is a correlediefficientr < 1,
that describes the accuracy of the linear relationshipuéétlose to 1 stand
for a good correlation, i.e. a close to linear relationsfiipe exact definition
can be found in most introductory texts on statistics, &8].[

In order to determine the quality of the approximation ofrepy values
by LZO compression, we have calculated the correlationfioberfts in one-
week intervals (basis measurement interval is 5 minutes)hi® SWITCH
network traffic of the year 2004.

Findings - TCP

The plots for the correlation coefficientfor TCP traffic can be found in
Figures 5.2, 5.3, 5.4 and 5.5. All, except the destinatioplt®, indicate
a good and mostly linear relationship between sample eptvajues and
compressibility-derived entropy approximation using ldep compressor.

3

2 T T T T T

Q

g 1f 1
_'9 \/—\/\/\/\,\/\W
— 08} b
c

Q

(5] - 4
£ 0.6

()

o

O 04F} .
c

§e]

8 02f]
g

8 O 1 1 1 1 1

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.
Date (2004)

Figure 5.2: TCP - Correlation coefficient, source IP

The destination IP plot in Figure 5.3 shows reasonable lztive values,
except for a number of sharp, negative spikes. A primaryextsipr these
spikes is scan activity against a subnet. If the scans arducted in a way
so that the repetitions strongly show up during the 5 minatefge entropy

5.4 Validation 65

0.8

0.6

0.4

0.2

Correlation Coefficient (7d interval)

O 1 1 1 1 1
01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.

Date (2004)
Figure 5.3: TCP - Correlation coefficient, destination IP

T

E Ir]
2

— 08¢} b
c

)

o L .
£ 0.6

(]

[}

O 04} i
c

]

8 02f i}
[

5 1 1 1 1 1

o

0
01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.
Date (2004)

Figure 5.4: TCP - Correlation coefficient, source port

measurement intervals, yet are not near enough togethiee hestination IP
address stream found in the NetFlow data, then the Izop esapr will not
detect the repetition. At the same, time the sample entrafgulation may
be influenced because of its larger measurement intervah damsequence,
sample entropy can be significantly lower during specifimsagivity, than
LZO estimated entropy.

Figures 5.6 and 5.7 show scatterplots of the data aroundrtefid last
negative spikes in Figure 5.3. Both plots show that the wahre closely
grouped together in the higher entropy area, consistehtstibnger scan ac-
tivity. The plots also show that the actual approximatiosti reasonable,

66 5 Entropy Estimation

3
b T T T T T
)
k= 1 ——————— 1
2
— 08} b
c
K}
(5] - 4
e 0.6
©
o
O 0.4 r -
c
kel
8 02 _
o
B 1 1 1 1 1
O 0
01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.

Date (2004)
Figure 5.5: TCP - Correlation coefficient, destination port

since the error is strongly localised. The results fromdmegression anal-
ysis are not very significant for a situation were the valuesctustered in a
small area, since it is then very sensitive to small errors.

Correlation Anomaly: 5.5.2004 - 9.5.2004

destination IP -

0.8 i

H [bit/bit]
o

()]

ﬁ%

04+ g

0.2 v i

O 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Izop [bit/bit]
Figure 5.6: TCP - Correlation anomaly

5.4 Validation 67

Correlation Anomaly (TCP): 11.11.2004 - 15.11.2004

1 T T T T
destination IP +
0.8} .
= 06 * .
a y
»
S
I 04} * _
02} .
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Izop [bit/bit]
Figure 5.7: TCP - Correlation anomaly
Findings - UDP

The results of the linear regression analysis for UDP traifécsimilar to the
TCP results. Figures 5.8, 5.9, 5.10 and 5.11 show good atioelfor all
LZO approximations, except the destination IP values. Hasons for the
suboptimal destination IP address results are the same #sefd@CP case,
namely scanning activity with partially randomised targétiresses, where a
larger data window than the 64kB used by the |zop compressoeéded to
recognise the limited range of the scan targets. Figure@ivE® a scatterplot
of the time around one of the stronger anomalies. The obdelustering is
similar to the observation for the TCP case.

5.4.5 Standard Deviation

To complement linear regression analysis, we examine émelatd deviation
of Hizo(x) — H (). This expression characterises the distance between the tw
values in each pair. While linear regression analysis détesra non-local
correlation by trying to fit the value-pairs with a line, tharsdard deviation

of Hizo(x) — H(x) gives a measure of the variation in distance between the

68 5 Entropy Estimation

T

2

[J]

E 1 I
2

= 0.8 4
c

)

(&} L .
£ 0.6

(]

o

O 04} 4
c

]

8 02t i
o

8 O 1 1 1 1 1

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.
Date (2004)

Figure 5.8: UDP - Correlation coefficient, cource IP

0.8

0.6

0.4

0.2

0
01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.

Correlation Coefficient (7d interval)

Date (2004)
Figure 5.9: UDP - Correlation coefficient, destination IP

two values, which is still meaningful when the value pairs all clustered
together in a small area.

Since we do not know the distribution Bif,o(x) — H(x), we cannot com-
pute its standard deviation directly. Instead, we will restie the standard
deviationc by sdefined as

1 N
S= \/N_l‘;(xi_)z)z

were X is the arithmetic mean dflj;o(x) — H(x) over the measurement

5.4 Validation 69

T

2 : : : : :

[J]

E 1 I
2

— 08F b
c

)

o L .
£ 0.6

(]

(o]

O 04} i
c

i)

8 02f i}
o

8 O 1 1 1 1 1

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.
Date (2004)

Figure 5.10: UDP - Correlation coefficient, source port

T

E T T T T T

9]

E 1§ I
E \/\/W\\/WV\W/V‘/
= 0.8 E
o

Q

o L .
£ 0.6

[}

Q

O 0.4 r R
c

kel

8 02t _
L

S 0

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.
Date (2004)

Figure 5.11: UDP - Correlation coefficient, destination port

interval (e.g. a day). The are the values fd#,o(x) — H (x) for the individual
measurements on the basis date. We use a random error assumpt

In our case the measurement intervals are 5 minutes longwitdverlap,
as before. FinallyN is the number of basis intervals we calculate the standard
deviation for, i.e.N = 288 for a day.

Findings

The plot in Figure 5.13 showscalculated individually for each day in 2004
for TCP. The plot for UDP is in Figure 5.14.

70 5 Entropy Estimation

Correlation Anomaly (UDP): 7.7.2004 - 11.7.2004

1 T T T T
destination IP~ +
08 r E
= 06F -
=
=
2,
T 04 B +$ 7
0.2 E
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Izop [bit/bit]
Figure 5.12: UDP - Correlation anomaly
0.14 | ' ' ' " source IP—— -
destination IP -
0.12F source port i
0.1r destination port e

Standard deviation (24h interval)

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.
00:00 21:00 18:00 15:00 12:00 09:00 06:00

Date and Time (UTC, 2004)
Figure 5.13: TCP: Estimated standard deviation of;5{(x) — H(x) per day

It can be seen that the standard deviation for all IP and paldsfis con-
sistently very low over the whole year for both TCP and UDitrawe omit
detail plots, since they do not show more than the yearlyspldie observe
that attacks of any kind do not lead to large differences betwentropy es-
timated by value frequency and entropy estimated by LZO cesgibility.

5.4 Validation 71

T

>

g 0.14 - source IP—— A
= N destination |P--------- i
5 0.12 source port:-------
o 0.1r destination port .
= i

RS 0.08 - -
o H

S 0.06

3

o 0.04

g 0.02 |

Il 0

n

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.
00:00 21:00 18:00 15:00 12:00 09:00 06:00

Date and Time (UTC, 2004)
Figure 5.14: UDP: Estimated standard deviation of(x) — H(x) per day

This demonstrates that LZO compressibility is a good apipration for rel-

ative entropy changes in the observed data. However, ildh@unoted that
while the match is quite good for each individual day, them lang-term

drift effects that do not show up in these plots.

Scatterplots

In order to demonstrate some of the observed effects furteprovide a
number of scatterplots for longer time intervals. The meament interval
length is 5 minutes, as before. All plots hakigx) on the vertical axis and
Hizo(X) on the horizontal one. We give one scatterplot for the whebr 2004
data and use plots for individual quarters of 2004 to illatgtispecific effects.

Ideally the scatterplots would show a 1:1 relationship leemH (x) and
Hizo(X), i.e. the measurements would be clustered closely around thy
line. The actual results show a linear relationship belois line in some
cases, i.e. compression reacts stronger to entropy chamgeslirect esti-
mation by value frequencies. Other cases show linear ciogten a line
parallel to the x =y line, i.eH,o(X) is larger tharH (x). We will now discuss
the individual results.

TCP: Source IP

The scatterplot for the source IP addresses can be foungjime=b.15. As
can be seehl (x) andH),o(x) are strongly correlated for source IP addresses.

72 5 Entropy Estimation

There is some shift over the year. Figure 5.16 shows onlyebersl quarter
of the same year. Clearly the values are less scattered.e@ben is that less
long-term parameter shift occurs due to the shorter meamneinterval.

SOUICEH; +

08 f
E 06 |
é 04t
£
jee}

02t

0
0 02 04 06 08 1

1z0 compressibility [bit/bit]

Figure 5.15: TCP: H(X) vs. Hzo(X), source IP, 2004

SOUICEH; +

0.8
z N
é 0.6 | +++ +## 7
E‘ o+t

ik
2 04F
<
jas] +
Y
02+
0 L L L L
0 0.2 04 0.6 0.8 1

1z0 compressibility [bit/bit]

Figure 5.16: TCP: H(x) vs. Hyo(X), source IP, 2nd quarter 2004

5.4 Validation 73

TCP: Source Port

The scatterplot for the source port numbers can be foundgar&i5.17. The
measurements show thegq(x) values go up to 1, whiléi (x) values remain
below about 0.85 with the exception of a small number of meamants. The
TCP source port field is clearly a high-entropy field. One p#ffect that can
be observed is that the left side of the plot seems to have t&ils™, one at

about 0.2 above the other. This can also be seen very cleat iscatterplot
for the third quarter in Figure 5.18. The effect is less promzed in the other
guarters (not shown) but still there. Since the number of doboth tails is
very small, we expect they are due to some specific scanniivitathat may

have lasted only hours but is recurring during the whole.y@ae tail would

be Hizo(x) without the scanning activity, the othkli,o(x) with the scanning
activity. Note that within the respective tail, the raligx) vs. Hzo(X) is quite

linear.

T
source port +

0.8

0.6

0.4

H (estimated) [bit/bit]

0.2

0 0.2 04 0.6 0.8 1
I1zo compressibility | bit/bit]

Figure 5.17: TCP: H(x) vs. H,o(X), Source port, 2004

UDP: Source IP

The scatterplot for the source IP addresses can be foundyimeé=b.19. It
shows a clear, almost straight line, with good concentnatithe individual
guarters show no remarkable differences, so we omit them.

74 5 Entropy Estimation

source |:‘mrt +
08
g 0.6 |
.;E, 04
= +++++ R +
'
+
+
02 »
0 L L L L
0 0.2 0.4 0.6 0.8 1

I1zo compressibility | bit/bit]

Figure 5.18: TCP: H(x) vs. Hzo(X), source port, 3rd quarter 2004

2004 data UDP
I
wource I+
08 |
06
g
&
= +
04 | +
T
Y
s
02+ M@ i
+4™ et +*
» FF
"
“w,f
o . . . L
0 02 0.4 06 08 1

Izop [bit/hit]
Figure 5.19: UDP: H(x) vs. Hyo(X), source IP, 2004

UDP: Destination IP

The scatterplot for the destination IP addresses can belfiouRigure 5.20.
As inthe TCP case, it shows a “bulge” around coordinates (043. Remark-

5.5 Discussion 75

ably this bulge is the only thing left in the fourth quarteegs~igure 5.21),
where the number of measurement intervals with good LZO cessibility
is low. This is due to a rise in UDP host scanning activity taygathe end of
the year 2004.

2004 data UDP

destination 10+

H [bitbit]

Toop Ibit/bit|

Figure 5.20: UDP: F|(x) vs. Hzo(X), destination 1P, 2004

5.5 Discussion

As the analysis by linear regression shows, entropy estmély compres-
sion has a low relative error when applied to traffic sourcedBrce port and
destination port fields. This finding holds for TCP and UDHfica For the
destination IP field, however, there are significant errttvat do not follow
the correlation trend at all. Scatterplots of measureniers with low corre-
lation in the destination IP fields (Figures 5.6, 5.7, 5.1®)vg the reason for
the errors: The destination IP entropy measurements haydovevariability
during low correlation times, as can be seen by the closepgrgun the scat-
terplots. While both, sample entropy and entropy estimayecbmpression,
reflect the low variability, noise has a far stronger effecttee correlation co-
efficient in this configuration, than for periods of highetrepy variability.
Since we are primarily looking for larger entropy changbgs type of error
does not represent a strong concern for our work, but it mgyrdiglematic in

76

5 Entropy Estimation

H [bit/bit]

2004 data UDP

dostination 10+

I7op |bitfbit]

Figure 5.21: UDP: H(x) vs. Hyo(X), destination IP, 4th quarter 2004

other applications. In Chapter 7 we will show that estingéntropy by com-
pression leads to results that are comparable to estimatitngpy by sample
entropy, when applied to our worm detector. The main difieesis a slightly
higher number of false positives, when entropy is estimbjecompression.

Chapter 6

Entropy Based Worm
Detection

This chapter will present the actual detection mechanisna $econd step,
we will explain how a detector can be calibrated for a spen#isvork. Actual
detection results, validating the design, are given iniSedt of Chapter 7.

The primary design goal for a worm detector, is of course, dtect
worms. Detection should be as early as possible, to allovertiore for anal-
ysis and countermeasures. A second, just as importantigaalpw rate of
false positives, i.e. network events not caused by wornas ttlgger the de-
tector. As it turns out, a worm detector based on entropy thas tcalibrated
for a certain outbreak strength and the specific port profita@worm. The
source port can be variable or fixed, and mainly depends owdhm imple-
mentation details. The destination port can be variablexedfidepending on
the vulnerabilities(s) used to compromise target systems.

When calibrating our worm detector for a specific worm profiatam-
eters for the individual detection thresholds have to benased. We use a
procedure where worm traffic data with the desired triggengith is inserted
into baseline traffic from the target network. In a secong the rate of false
positives is evaluated on a longer baseline traffic set withrm traffic in it.
Calibration can also be done with observation data fromweains, possibly
with modifications to the worm traffic. We use partial remoofthe worm
traffic in order to evaluate detector sensitivity for a degethat has had its
sensitivity increased by dividing all thresholds by a fadéwger than one.

78 6 Entropy Based Worm Detection

6.1 Detector Design

6.1.1 Approach

As discussed in detail in Chapter 4, the outbreak of a fastret worm
changes entropy characteristics of flow-level Interneffitralata. Typical
fields that exhibit changes are source and destination IfReaslflelds and port
numbers. Since these fields are already sufficient to buildr&ing detector,
we limit the design to them. Refinements that use additiorstios, such as
flow-counts per time, are discussed in Section 6.4.

For the actual detection, flow-level traffic data is first gred into time
intervals. Typically, these are discrete intervals of fieagth, e.g. 5 Min-
utes. The value sequence of the data field under consideratitnen ex-
tracted and its entropy is estimated (see Chapter 5). Thitirgstime-series
of entropy values is used to determine a baseline by takiagterage of
interval measurements directly before the current intelya This average
is then compared with the value fby. If the difference exceeds a specific
threshold and has the right sign (see Section 4.2.4), thethifbdata field,,
has a positive detection value. For a final decision, therdiblels are evalu-
ated in the same fashion. If all data fieldd,phave a positive detection value,
then we have detected an outbreak event (or a false positiveg¢asurement
interval l,.

Note that we have to build a separate detector for each differorm
behaviour profile. A worm profile is the set of signs of its dweristic en-
tropy changes during outbreak, relatively to the baselimeopy values. It
hence consists of four sign values, one for each IP addreseranfor each
port number. If, e.g., a worm has scan traffic with a fixed seart address,
it cannot be detected by a detector built for a worm with aaldé source
address port, since in the first case the source addresseidrefitropy de-
creases during the worm outbreak, while in the latter cags;rieases.

A first refinement, that serves to reduce false positivesp isdt only
require detection im,, but ink consecutive detection intervals k1, - - -, In.

In this case the baseline average is computed over the afgepvy_|, ...,
In_k to avoid influence on the baseline by the already changedctamistics

of the current detection intervalg_y, ..., In. With this refinement, we have
an overall positive detection at tinmif we have a positive detection for &l
consecutive intervalk, k.1, ..., In. The advantage is a reduced rate of false
positives. The disadvantage is that detection latencydseased byk — 1
times the interval length. Note thitmay not be arbitrary long. It has to be

6.1 Detector Design 79

short enough that the worm scan activity is present to a sifficdegree in all
kintervals, otherwise fast worms that stop scanning aftéoat $ime will not
be detected. For a worm that finishes its spreading phaseneasurements
intervals and then stops scanningds aetector withk'’ > k may not detect the
worm outbreak at all. Typical values fararek € {1,2,3}.

6.1.2 Design

Input data interval stream

L (Lo | L] ..

'

L Al

B

=

from other data features = ——
B

Figure 6.1: Single interval detector

The dataflow for a single interval detector can be found iufgg.1. On
the top, left side, is the input data stream separated ittovials and reduced
to the traffic feature under observation. For our detecherabserved traffic
features are source IP address, destination IP addressesport number
and destination port number. The entropy of each intervdétermined (by
an estimation procedure, see Chapter 5) and averaged evbaseline time
range, giving the feature baseline value at tim& he baseline value is then
compared to the value of the respective traffic feature irctiveent interval
In and the difference (with sign) is fed into a threshold elem@&his element

80 6 Entropy Based Worm Detection

Input data interval stream
‘ I ‘ R ‘ Iy Inflﬂ»l ‘ ‘ I,
H H H H
I
@
.
&
I
—= O (—»
Avg. A -1
& H——
_—
from other data features ~——— |
e

Figure 6.2: Multiple interval detector

outputs a value of true, if the difference between curreitevand baseline
(with correct sign) exceeds the threshold set for the rdieetraffic feature.

The detection result for the traffic feature is then combinéti the de-
tection results for the other traffic features by AMD operation. If all are
positive, a worm scan detection event is detected in intdpvaFigure 6.3
illustrates the approach using a plot of the per-intervéiogy values.

The detector can be extended t& mterval detector, as shown in Figure
6.2. Here, an event for this traffic feature is detected idbiction threshold
is exceeded in ak detection intervalé, . 1,...,In. A Kinterval detector for
k > 1 has a detection latency that is higherkby 1 times the interval length.
Its primary advantage is that it is less likely to producedgbositives, since
any event that triggers it has to be present irkaletection intervals.

6.2 Calibration 81

Measured value
E.g. H(source IP)

Measurement sequence

Average

Detection threshold

Average done over | intervalls

Time

Figure 6.3: Single interval detector on data plot

6.2 Calibration

Calibration of the detector is necessary for the followiegsons:

e Worm scan activity and hence traffic entropy charactergtanges can
be arbitrarily low. Therefore it is not possible to define fimte maxi-
mum detector sensitivity. The sensitivity has to be setéstethat both
the sensitivity level and the rate of false positives is appate for the
target network and intended purpose.

e Baseline traffic will be different from network to networkh@ likeli-
hood of false positives of a specific detector parametasdias to be
evaluated for each network with its specific traffic mix.

Also, keep in mind that even if a specific worm or worm modelsgd
for calibration, the detector is not specific to it, but ratheleast sensitive
enough to detect worms that generate scanning traffic ofaime gype with
the same or higher intensity. It is also quite possible tibcate the detector

82 6 Entropy Based Worm Detection

on one worm model and then parametrise it to be more senbitiaespecific
factor. If one detector is to be calibrated for several womith the same
entropy profile but different intensities, it is possiblecalibrate it on each
worm individually and then choose the most sensitive vatuenél for each
parameter.

Of course choosing threshold values without adjusting tteemspecific
worm model is also possible. In this case the sensitivity lmdle to be eval-
uated on one or several worm models.

Assuming that a measurement interval length has been sé|dbe pa-
rameters to be determined and tuned in order for the detectaork well are
the following:

1. The thresholds in the individual threshold discrimimatevorking on
the different input fields

2. The sign for each thresholds

3. The number of intervals to be used for baseline generation

The baseline period length parameter is the easiest in qariexce. A
value of one hour seems to work well. If, however, at the enithefcalibra-
tion process, the rate of false positives is not acceptadihgier and shorter
baseline periods can be examined as alternatives. Edgdtialrelatively
slow worm needs to be detected, a significantly longer hasgeriod may
be needed.

In order to determine the threshold values and signs, wormetscare
needed. For TCP the typical situation is that the sourcewitirbe variable
and hence source port entropy will increase during a worrbreak. Fixed
source ports are possible though, if the worm designer doesse the OS
network stack, leading to a decrease of source port fieldpytduring the
outbreak. Destination port field characteristics dependhenvulnerability
exploited. Typically the destination port will be fixed foICP, since data
transfer (needed to transport exploit code) with TCP regua successful
handshake. This in turn requires an open TCP port, whichhailke a specific
port number. The IP address fields have a specific behavimtriould be
very hard or infeasible to change, see Chapter 4.

For UDP worms, the situation is more complicated. Any coration
of port field entropy is possible. Still, the IP address fiegddsropy has one
specific behaviour, as discussed in Chapter 4.

6.2 Calibration 83

Once a worm model is determined, a mix of base traffic and wartn o
break traffic is needed. An ideal solution is of course reafitr that was
recorded during an actual worm outbreak. Worm models andssilple ap-
proach to worm traffic synthesis are discussed in Sectionf3his thesis. Of
course baseline traffic can be synthetic as well, but we éxpatobtaining
realistic baseline traffic by simulation may be actuallyshene or more effort
than doing traffic measurements.

With this traffic, the thresholds are adjusted so that eaelfamms a sharp
detector. This can be done, e.g., by determining the exattmal absolute
threshold for timely detection and then relaxing the valyedyy., 5%. (See
Section 7, for a discussion of the effect of relaxing theshoéds.) After this,
a significant amount of base-traffic without worm outbreak# is needed.
On this the rate of false positives is determined by feeditmthe detector. If
the rate is unacceptable, the parameters can be refinediboaddmeasures
can be implemented to make the detector more discriminatigg Section
6.4 for a discussion of several possibilities.

The calibration process needs the following steps:
1. Getreal traffic observations for your network

2. Get worm observations for your network or define synthatorm
models. These supply the signs for the individual threshaldes.

3. If your worm traffic is defined only by a model, generate wdraf-
fic and insert the individual flows into a section of baselirsdfic at
random positions.

4. Determine tight individual thresholds for timely deieat

5. Divide the thresholds by a factor in order to increase émsisivity. The
sensitivity level of a parameter setting is given by the sl factor.
The tight threshold settings have a sensitivity level of 1.0

6. Determine the number of detection intervals, if a muiterval detector
is to be used.

7. Determine the rate of false positives on a large sectitaséline traffic
without worm propagation events.

8. If the rate of false positives is unacceptable, recomside worm
model, as well as, steps (5) and (6) and try variations of teelne
length. Further possibilities can be found in Section 6.4.

84 6 Entropy Based Worm Detection

If several worm models are used, the calibration processldhie used
for each one. It is possible to either build a single detethat uses the
minimal absolute threshold of individual detectors, or tildall individual
detectors and combine their individual outputs.

6.2.1 Calibration Example

As an example, we will use the Blaster worm, see also Sectha @nd Sec-
tion 7.4. Blaster uses TCP for its initial contact to the ¢&ygnd therefore
has to use its real source IP address in the traffic. Henceotireesaddress
field in all scan traffic from each individual infected hostivae fixed. This
means, that the worm scan traffic decreases the source |Bsadikld en-
tropy and the threshold sign is negative. Every scanningnivaoas to use
a variable target IP address, otherwise the attack traffiddwoot reach the
target. The effect is that the target IP address field entiomcreased by the
scan traffic, and hence the detection threshold sign isipesBlaster uses a
vulnerability in port 135/TCP on the target system, i.e.trget port number
in its scan traffic is fixed. As a consequence, the target porther entropy
is lower, compared to normal traffic, leading to a negatigs $or the target
port number detection threshold. Source port numbers iat8lacan traffic
are variable and increase source port number entropyiiregsul a positive
threshold sign for the source port number field. Table 6.1vshibe result-
ing worm profile. With this profile and measurement data from$WITCH
network, we obtain the set of detection thresholds showraliel6.2. This
concludes initial calibration of the detector for a tightdithe worm.

The detector sensitivity can then be increased by dividirggvialues in
Table 6.2 by a value larger than one or decreased by dividiexy by a value
between zero and one. As a next step, the now parametrisectateshould
be run on a set of baseline data to determine the number ef palsitives it
generates. If the result is unacceptable, variations op#inametrisation can
be tried or the detection interval numbecan be increased.

source| destination| source| destination
IP IP port port
-1+ [+ 1 -]

Table 6.1: Blaster worm profile. “+” means entropy exceeds baselineiagr
outbreak, “-” means entropy decreases below baseline duauatbreak.

6.2 Calibration 85

source| destination| source | destination
IP IP port port

tight (1.0) || -0.06 | +0.05 | +0.062] -0.16 |

Sensitivity

Table 6.2: Detection thresholds for Blaster

6.2.2 Risks of Synthetic Data

While generating synthetic worm traffic is not a major proble®e Chapter
3), synthesising realistic baseline traffic is a hard pnobl@he specific dif-
ficulties for the problem of worm detector calibration liethe fact that the
baseline is needed in order to evaluate the rate of falseiyessfor a spe-
cific detector parametrisation. Since false positives yoeeally caused by
anomalies, such as conventional scanning, (D)DoS attaukthe like, false
positives are caused by anomalies themselves. Synthgsiaffic with a re-
alistic anomaly profile is infeasible without determinifgstanomaly profile
on the target network first. This in turn needs real trafficepbagtions. We
expect that generating realistic synthesised baseliffectimactually signifi-
cantly harder than recording real traffic in the first placeadldition, it very
likely needs knowledge of the specific parametrisation efdatector that is
to be calibrated using it, which leads to a circular depengen

An alternative to using synthesised baseline traffic carohesé baseline
traffic from a different network and to adapt it to the specifegwork con-
ditions of the target network. For global anomalies it skdog feasible to
obtain a realistic baseline in this way. For local anomaliest are specific to
the target network, this process is however likely to renugisatisfactory.

6.2.3 Reducing False Positives

One approach to reducing false positives is to use countiicators. For ex-
ample, if entropy metrics indicate massive scanning agtitiut the number
of traffic targets in the local network does not increases ihdicates an at-
tacker that already knows which hosts are reachable in ttad feetwork. In
this case the source of the anomaly may still be a worm, hawsetone
with random scanning, but rather one with a precomputedhiiee Section
3.4.3). Additional parameters of this nature can be use@te@te counter-
indicators with mostly the same detection mechanism asepted in this

86 6 Entropy Based Worm Detection

chapter. In the presence of a counter indicator, the ofligiositive detection
is either suppressed or reported in a modified form that atdicit may be a
false positive.

A second application is to generate counter-indicator&fown anoma-
lies. The idea is that the presence of a positive countécanatr value inval-
idates a positive detection result. For example, if theee(BY)DoS attacks
against the local network from a specific source IP range tr sgecific traf-
fic characteristics, this can be detected separately amttoseippress worm
detection that triggers on the (D)DosS traffic.

Of course there is the risk of attackers using cover traffig, &y con-
ducting repeated (D)DoS attacks against a network, andetkecuting low-
intensity attacks in parallel. However, since this exanipl@ot a global
anomaly, but a targeted attack against a specific netwoikpititside of the
focus of this work and better addressed by standard IDS édié&chanisms.

6.3 Scalability

6.3.1 Larger Networks

For larger networks, the detector generally benefits frowetonoise, and
hence from lower numbers of false positives. As a downsistinating the
entropy of the individual traffic flow fields becomes compiatiaélly more

expensive. If entropy is estimated by compression, as siszlin Chapter
5, the computational effort increases linearly with thegizthe input, while
memory consumption remains constant. If sample entropgesl uthe com-
putational effort also increases linearly with the inpaesiwhile the memory
need increases linearly with the number of different vakesn in a measure
ment interval.

We believe that with estimation by compression, our detectipproach
remains feasible and relatively cheap to implement, as &mthe problem
of importing the raw flow data into computer memory is possilbi the flow
data can no longer be imported in real-time, then a flow bapprbach fails
or is degraded to a post-mortem analysis function. Stitlthis situation it is
possible to work with a randomly selected subset of the égdatata or to do
entropy estimation for different subsets of the flow dataiffer®nt machines
and average the results.

6.4 Refinements 87

6.3.2 Smaller Networks

The problem with smaller networks is that the observed traffita has a
larger noise component, since small events, such as a dagvidoan indi-
vidual computer, can have a significant impact on the ovénadfic charac-
teristics. We expect that our detection approach will poedan unacceptable
number of false positives for small networks. Since it is taotjeted at this
type of scenario, we feel that this is not a drawback.

6.4 Refinements

Itis possible to improve on the basic detector design ptesan this chapter.
Improvements may, for example, be desirable in order toiobtare specific
detection results or to reduce detection latency.

6.4.1 More Specific Detection Results

A primary approach is to run several instances of the detedgtb different
parametrisation, e.g. more sensitive and less sensitigs. okore sensitive
ones can already react to lower-intensity scanning and earséd to gener-
ate a pre-warning. Another possible variation is to run sdvaulti-interval
detectors with different detection interval numbers. Vs it becomes pos-
sible to distinguish between short, high-insensitivitaraging activity and
worm-scan activity. The worm-scan activity will typicalpersist over sev-
eral measurement intervals, while high-intensity scamfdm other purposes
often stops again after a few minutes.

6.4.2 Reducing Detection Latency

The primary means of reducing detection latency with skigierval detec-
tors is to use a sliding observation window, i.e. a detectimerval that is
moved by a fraction of the interval length for each detectitap. On average
this can reduce detection latency by up to half the interdjth.

When using multi-interval detectors, it is possible to useersensitive
parametrisation in the earlier detection intervals. Tlkia bave significant
benefits for slower spreading worms, but increases the fdit¢dse positives.

Chapter 7

Detector Validation

The purpose of this chapter is twofold: First, we will showttthe detector
design from Chapter 6 performs well on real-world networkadaSecond,
we will demonstrate that estimating entropy by compresgistead of by
sample entropy is a valid alternative, by providing detacttiesults both for a
detector using sample entropy and for one using compression

An additional validation possibility is the use of simuldteaffic. We will
discuss this possibility briefly in Section 7.7

7.1 Validation Basis Data

All measurements are done on real data from the SWITCH nefwsekAp-
pendix C. The validation data spans the first six months o206 order
to reduce the data to a manageable size, we only use the qaietezk by
the swiCE1 andswiCE2 routers. This represents about half the number of
flows seen on the SWITCH network border routers. A second refasdhe
reduction is that the flow export engine of the third borderteo, swilX1 ,
was partially overloaded at the time the validation data reasrded, which
introduced additional noise and flow-loss, especially ghHoad times, such
as worm outbreaks and DoS attacks. Depending on the deferimmetrisa-
tion, this can cause both a higher and a lower number of falsdiyes and
would generally have led to unrealistic measurements.

In the following, we evaluate detector characteristics o Blaster and
Witty worm outbreak. For the Blaster worm detection measangts, we use

90 7 Detector Validation

an additional 3.5 day long data interval from 2003 that coistéhe initial
Blaster outbreak. All measurements are done first with tigtesholds and
then with increased sensitivity by dividing the threshatdy the same fac-
tor.

7.2 Worms Used for Validation

7.2.1 The Blaster Worm

We are considering the first observed variant, Blaster.A.brevity we will
refer to it as “Blaster”. Blaster had its initial outbreak Angust 11, 2003,
approximately between 16:30 UTC and 17:00 UTC. The injtiatifected
population was in excess of 150.000 hosts, according torttegriet Storm
Center [10]. Saturation (i.e. 90% of the reachable and valrie popula-
tion is infected) was reached after approximately 8 houtastBr targeted a
vulnerability in the Microsoft RPC mechanism, accessiliéeRort 135/TCP.
A detailed analysis of the Blaster worm and its infection heaism can be
found in [37].

7.2.2 The Witty Worm

We use the Witty worm [90, 104], first observed on March 20004 as a
second example. Witty attacks a specific firewall productseltds attack
datagrams to random addresses witfixad source port of 4000/UDP and
variable destination port. The firewall product is then compromisedlev
inspecting the datagram. While the attack payload is less 708 bytes in
size, it is padded to a total, random size between 796 and k@®s for
each datagram sent. No additional communication is needeanplete the
infection.

Witty infected only about 15’000 hosts, but was clearly bisiin the
UDP entropy statistics. While there is far less UDP traffimtA&CP traffic
in the Internet, UDP traffic is aggregated to a lower degrethénSWITCH
routers and there are almost as many UDP flows exported as ®@#® fThe
Witty worm analysis by CAIDA [90, 93] places the initial Wjtbutbreak at
8:45:18pm PST on March 19 (i.e. 4:45:18 UTC on March 20), 20@d#ch
is the most precise outbreak time we were able to find in thedlitire.

One notable characteristic of Witty is that it was very cotepdy de-
signed [115]. In fact, analysis of the worm code did not réeesy imple-

7.3 Quality Measures 91

mentation weaknesses, contrary to many other worms. Ther oittable
characteristic of the Witty worm is that it managed to reaatusation within
about 15 minutes, despite the low number of vulnerable hd3efore the
Witty outbreak, it was not known whether a comparably sharetto satu-
ration was feasible for such a small number of vulnerableshasd whilst
using a random scanning strategy.

7.3 Quality Measures

We use several different metrics for measuring the actusiltrguality of a
worm detector. These are detection delay, false negatiwkfaise positives.
Detection delay is the period of time after worm propagatraffic becomes
visible until the worm is detected. False negatives desanibich outbreaks
are not detected. False positives describe which, and hawy,mother non-
worm anomalies are misclassified as worm outbreaks.

Detection Delay

With our detector, the detection delay depends on the measant interval
length. We have to gather data for a specific time and therepgoit to de-
termine whether a worm outbreak event was visible duringrieasurement
data interval. For our detector, this can only be done at tideo# each mea-
surement interval. In addition, the anomaly has to habegmoupact during
a measurement interval in order to be detected in it. If, kameple, a worm
outbreak shows up weakly at the end of a measurement intamdatot at all
before the interval, then it will likely only be detected thg the next mea-
surement interval. If multi-interval detection is useck tiverall observation
time becomes the effective measurement interval. As ogétian, the basis
interval can be shifted in an overlapping fashion to redwatection latency.

False Negatives

A false negative is a serious problem. It basically meantsathavent, which
should have been detected, was not detected at all. For ol thes is diffi-
cult to define. Since we do not consider slow worms, failurddtect a slow
worm is not a false negative. In order to generate a falsetivegaith our de-
tector design, a worm would need to increase scanning gctiery slowly,
so that it becomes part of the baseline. However, this woutdraatically

92 7 Detector Validation

make the worm a slow worm. Still, if the detector is paransedliwith very
high detection thresholds, it is quite possible to miss imztks of fast worms.
As in Chapter 6, we call the highest thresholds, that stltléo reliable de-
tection of a worm, a set dfght thresholds. If they are exceeded in a detector
parametrisation, the worm will not be detected at all or datgr. False neg-
atives can also be generated by choosing a very short bagsdiiod, then
the effects of the worm outbreak can become part of the besbgifore the
detection thresholds are exceeded.

Itis quite feasible and very efficient to run several diffahe parametrised
detectors in parallel, and then observe their differeréctéin results. Rather
than seeing the differences as a problem, we suggest thaatheally rep-
resent a pre-classification of the observed worm outbreaktemto different
intensity classes.

False Positives

False positives are not directly a problem. What makes thevhlgmatic

is that they can overwhelm the second stage detection systemnthe sys-
tem tasked with analysing alerts, as well as, selection mpteimentation of
countermeasures. Today, the second stage is typicallyeimmaited by man-
ual analysis. This approach does not scale well, and gettiddgional experts
to perform the analysis is expensive and difficult. Therefhigh number of
false positives can result in a DoS-like attack on the oVeletection mech-
anism. In fact, in current IDS systems, false positives aeaf the primary
and often unsolved challenges.

In our scenario, detection quality increases when morectieteintervals
are used (as long as the detection interval length is kestant). It is possi-
ble to continue detection with additional intervals aftatial alerting and to
de-alert the user. This makes some false positives tran#iso, depending
on the specific network protection requirements, alerts\fooir worm detec-
tor can be combined with other measurements, e.g. netwabiist indica-
tors. This provides the possibility to restrict fast (anskleeliable) alerting to
situations where network stability is potentially impattéf network stabil-
ity is not impacted, detection can then be done with long&ydgy using a
multi-interval detector) and lower probability of falsegiives.

7.4 Validation Results for the Blaster Worm 93

7.4 \Validation Results for the Blaster Worm

Figures 7.1 and 7.2 show the entropy profiles during the Btagbrm out-
break, for sample entropy (top) and entropy estimated by c@@pression
(bottom). The detector signal is shown for tight thresh¢sd® Section 6.2).

source| destination| source | destination
IP IP port port

Sample entropy]| -0.06 | +0.05 | +0.062] -0.16 |
Compression [-0.08 | +0.033 | +0.06 [-0.17 |

Table 7.1: Blaster: Tight detection thresholds

We calibrated one detector using sample entropy and ong aempres-
sion on the real Blaster outbreak using the procedure destin Section
6.2. The resulting tight detection thresholds are givenahl& 7.1. The de-
tectors were then run on the DDoSVax TCP data for the first dfa%004.
The basis measurement interval was 5 minutes in all casesbdseline was
determined over one hour, i.e. 12 measurement intervalasidements were
taken only on flows entering the SWITCH network, since the population
within the SWITCH network is small enough to cause significarise, and
local events have a significant impact on the charactesisti¢lows leaving
the SWITCH network.

To determine the dependency of false positives on the nuofletection
intervals in a multi-interval detector, measurements waken with one, two
and three detection intervals. Note that the number of teteintervals
corresponds t& in Section 6.1 and in Figure 6.2. We use the simple multi-
interval approach, where all detection intervals use tineestnresholds. To
determine the impact of more sensitive detection threshmidalse positives,
the tight detection thresholds were divided by a factor &edhbeasurements
were then repeated. For Blaster, the factors 1.4 and 2.0uwseck

Since entropy is a combined additive and logarithmic megdadividing
a threshold by a factor aj can reduce the number of flows needed to trig-
ger the detector by a factor significantly different frgqmThe actual effect
depends on the concrete traffic mix. Table 7.3 lists the tffetincreasing
sensitivity for the Blaster worm as observed in the SWITCHadahe effect
was determined experimentally by randomly removing a fijgeoumber of
Blaster flows until detection failed.

94 7 Detector Validation

source IP outbreak time
WWWWMM———\W

destination IP

W&MWW%M%

W

destination port

Sample entropy, each range = [0,1]

Example detector output
(sensitivity 1.0, one interval)

10.08. 10.08. 11.08. 11.08. 12.08. 12.08. 13.08. 13.08.
00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00

date (2003)

WWWWM outbreak time

e e T e]

destination IP

source port

destination port W

Example detector output
(sensitivity 1.0, one interval)

Compression, each range = [0,1]

10.08. 10.08. 11.08. 11.08. 12.08. 12.08. 13.08. 13.08.
00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00

date (2003)
Figure 7.1: Blaster worm: Sample entropy (top) and compression (bgttom

7.4 Validation Results for the Blaster Worm

source IP source port

v

=[0.1]

NNV

destination IP

/\\W

destination port

Y
\v

Sample entropy, each range = [0.25,0.75]
Sample entropy, each range

outbreak time outbreak time
15:00 16:00 17:00 18:00 15:00 16:00 17:00 18:00
date (11.08.2003) date (11.08.2003)
T T T T \’_/_/\'v’
source IP W
— W/\ __|source port
= P —] —
=) =)
I 1
(] (6]
(o)) (=]
c c
o ©
ey <
Q Q
IS ©
() (]
§ | destination IP & |destination port
) I~ [
o o
1S 1S
e} (o]
(&) o
outbreak time outbreak time
Il Il Il Il Il Il Il Il
15:.00 16:00 17:00 18:00 15:00 16:00 17:00 18:00
date (11.08.2003) date (11.08.2003)

Figure 7.2: Magnification of Figure 7.1 around outbreak time

96 7 Detector Validation

1.0 * 1076 T T
flows to 135/TCP per 5 min
8.0 * 10”5 -
6.0 * 10”5 -
4.0*10°5 |
2.0*10"5} suspected outbreak time (16:§5
17} exceeds previous maximum (17:00)

00 * 10/\0 1 1 1 1

11.08. 11.08. 11.08. 11.08. 11.08. 11.08.

12:00 14:00 16:00 18:00 20:00 22:00

Date and Time (UTC, 2003)
Figure 7.3: Blaster worm: Flows to port 135 TCP

Sensitivity || Sample entropy || Compression |
Intervals Intervals
1 2 3 1 2 3
fight 3(0) | 0(0) [0 | 6(0) | 0(0) |0(0)
14 23(1) |13 300240 | 100 [4(D)
2.0 55(14)| 32(3)| 9(2) |[50(8) | 26 (2) | 9 (1)

Table 7.2: Blaster: False positives vs. threshold tightness

Sensitivity Blaster flow count
Sample entropy| Compression
14 0.739 0.740
2.0 0.596 0.600

Table 7.3: Blaster: Sensitivity vs. reduction in number of Blaster 8ow
needed to trigger the detector

Our detector found the Blaster outbreak first in the measengrnmter-
val starting at 17:03 UTC on August 11th, 2003. More serssitiwveshold
settings did not result in earlier detection. While the eXlester outbreak
time is unknown, the earliest time the Blaster outbreak meayeheen vis-
ible in the SWITCH traffic was around 16:35, when a slight ilasein the

7.5 Validation Results for the Witty Worm 97

connection attempts to port 135/TCP could be noticed [3e first time
the number of flows to port 135/TCP exceeded the peak numkitaves to

port 135/TCP in the 5 hours before the outbreak, was at 17700, ds can
be seen in the traffic plot in Figure 7.3. The first successfieldtion of a host
in the SWITCH network was at 17:42 UTC [37].

False Positives

The numbers of false positives during the six month referedata interval
are listed in Table 7.2. Closer inspection of the false pastrevealed that
a large number was due to burst scan activity on several dalygisecond
half of June 2004. The scan activity caused false positivéshoth entropy
estimation methods used. The numbers in brackets in Tablepgresent the
number of false positives without this specific scan agtivit

The burst scans in June 2004 were all done at 5:25 UTC, 7:15 @nc
with lesser intensity at 8:40 UTC. They lasted for up to anrhaith bursts
between 5 and 10 minutes long. The number of overall netwovksfiper 5
minute interval entering the SWITCH network during the scavas up to
4.5 times higher than observed directly before and afteatttemaly. Closer
inspection revealed that during these intervals a largebeurof flows was
sent from a relatively small number of hosts to a large foawtif the SWITCH
IP range, suggesting a targeted, combined host and porosdtie SWITCH
host population.

7.5 Validation Results for the Witty Worm

In order to determine detection characteristics for an UB&eld worm, we
used the procedure in Section 6.2 to determine tight thidsHor the real
Witty worm outbreak in the DDoSVax dataset. Again, we deteed a set
of parameters for a detector that uses sample entropy ar@héothat uses
compression. The reference data set was the same as forasieBiorm,
but restricted to UDP data. As with Blaster, only flows emtgrihe SWITCH
network were used. Since the Witty worm outbreak occurediwithe first
half of 2004, we initially used a lock-out time of 6 hours befand after
the known outbreak time and detections within this time werecounted as
false positives. As it turned out that there were no falsétipes within the
lockout time period, no effort has been made to optimiseigufes 7.4 and
7.5 show the UDP traffic entropy profiles during the Witty wasatbreak for

98 7 Detector Validation

sample entropy (top) and entropy estimated by LZO compyag&iottom).
The detector output plot is for the tight detection thredaddiven in Table
7.4.

source| destination| source| destination
IP IP port port

Sample entropy|| -0.016| +0.061 | -0.082[+0.21 |
Compression [| -0.037] +0.091 [-0.085] +0.20 |

Table 7.4: Witty: Tight detection thresholds

Sensitivity || Sample entropy|| Compression |

Intervals Intervals

1 2 3 1 2 3
tight 0 0 0 0 0 0
14 0 0 0 0 0 0
2.0 0 0 0 0 0 0
3.0 0 0 0 0 0 0
4.0 0 0 0 1 1 1
6.0 1 1 1 3 3 2
8.0 7 1 1 4 3 2

Table 7.5: Witty: False positives vs. threshold tightness

The earliest time that we were able to detect the Witty worralignges in
the UDP traffic entropy profile was during the measuremesetval starting
at 4:45:00 UTC on March 20, 2004. This is consistent with oleé@ns
by CAIDA [90, 93] that places the initial outbreak at 4:45:48 the same
day. Similar to the Blaster worm, increasing sensitivity dot lead to earlier
detection and our detection time of 4:50 (end of the measeménterval)
represents the best possible detection latency our detemtoachieve with
the given measurement interval length.

For the Witty worm, Table 7.5 gives false positive counts #mel im-
pact of increasing sensitivity (left side) and using muiterval detection (top
row). It can be seen that an increase of sensitivity by a faxtat least 6.0 (for
sample entropy) and at least 4.0 (for LZO compression egtnentropy) is

7.6 Discussion 99

Sensitivity Witty flow count
Sample entropy] Compression
14 0.739 0.738
2.0 0.598 0.638
3.0 0.483 0.515
4.0 0.423 0.459
6.0 0.360 0.400
8.0 0.332 0.367

Table 7.6: Witty: Sensitivity vs. reduction in number of Blaster floweded
to trigger the detector

needed to produce any false positives. The improvementeimtimber of
false positives when using multi-interval detection isatigely small for the
range of intervals we used.

7.5.1 Validation Results for a Modified Witty Worm

Because of the special port characteristics of the Wittymyaramely a fixed
source port and a variable destination port, we did an amfditidetection run
on the reference interval with the port characteristicersed, i.e. a vari-
able source port and a fixed destination port. This simukatesriant of the
Witty worm that uses a variable source port and a fixed ddgtimaort, i.e.
the typical port characteristic of a worm that attacks aisermunning on a
specific port. The detection thresholds were the same asdéanrimodified
Witty worm.

The detection results are listed in Table 7.7. It can be destrfar sample
entropy a sensitivity increase of 4.0 is needed to produgdase positives.
The results for compression are similar, but a bit worseh whe first false
positives occurring at a sensitivity of 3.0. Using multierval detection is
very effective in reducing false positives for both entregyimation methods.

7.6 Discussion

We have demonstrated the validity of our detector desigmanwell-un-
derstood fast Internet worms using a significant amount aff traffic data

100 7 Detector Validation

T
outbreak time

A ABANAARABI | Ay v g i A A

source IP

LAt AT AN o] A A AR
destination IP

ource por WWW
destination port I e
o T oA e e)

Example detector output
(sensitivity 1.0, 1 interval)

Sample entropy, each range = [0,1]

I

18.03. 18.03. 19.03. 19.03. 20.03. 20.03. 21.03. 21.03. 22.03.
00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

date (2004)

source IP outbreak time

R N

L M AU ARSI IAT ARy e

destination IP

O Y TN I8 T I (¥ (VU Y T VY YWY Y e W
source port

R
R L A Ll Lo S

destination port

Compression, each range = [0,1]

Example detector output
(sensitivity 1.0, 1 interval)

I

18.03. 18.03. 19.03. 19.03. 20.03. 20.03. 21.03. 21.03. 22.03.
00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

date (2004)
Figure 7.4: Witty worm: Sample entropy (top) and compression (bottom)

7.6 Discussion

101

Sample entropy, each range = [0.25,0.75]

Compression, each range = [0,1]

source IP

destination IP

L

—

outbreak time

03:00 04:00 05:00 06:00 07:00

date (20.03.2004)

source IP

e~

destination IP

-

——

outbreak time

03:00 04:00 05:00 06:00 07:00

date (20.03.2004)

Figure 7.5: Magnification of Figure 7.4 around outbreak time

=[0.1]

Sample entropy, each range

10

Compression, each range

T
source port

T

destination por

.

i

outbreak time

03:00 04:00 05

date (20.03.2004)

source port

|

destination por

I

outbreak time

03:00 04:00 05

date (20.03.2004)

:00 06:00 07:00

:00 06:00 07:00

102 7 Detector Validation

Sensitivity || Sample entropy|| Compression |

Intervals Intervals
1 2 3 1 2 3
tight 0 0 0 0 0 0
1.4 0 0 0 0 0 0
2.0 0 0 0 0 0 0
3.0 0 0 0 25 2 0
4.0 1 0 0 114 | 14 1

Table 7.7: Modified Witty: False positives vs. threshold tightness

from the SWITCH network. False positives were evaluated dhahgear of
SWITCH network traffic data, giving realistic measuremehtg tlso include
rarer network events. The numbers of false positives fousiwow and can
be reduced further with multi-interval detection. This derstrates that the
detector design is capable of working well with real netwddta. We also
measured the effects of increasing detector sensitivitgiiging all thresh-
olds by the same factor and demonstrated that this appreasénisitivity
adjustment is valid.

In addition, we determined the number of false positivesafaretector
parametrisation for a hypothetical Witty worm variant wiiterse port char-
acteristics. The results demonstrate that the good detteatisults for the
Witty worm are not due to its particular port profile.

Detection Quality

For both worms, detection latency is low. For the Blastermiowe have
detection in the first interval where the number of flows tat 4@5/TCP (the
Blaster scan target port) exceeds the number of flows to thisduring the
time period shortly before. This result can be seen as opfiona traffic-
mix based approach such as ours. In the case of the Witty warhave
detection in the first measurement interval that contaiegithe of the actual
Witty worm outbreak. This is optimal.

With regard to false positives, we see no or very low numbEfage pos-
itives for tight thresholds. When sensitivity is increagbe,false positives for
the Blaster worm increase relatively fast for single in&éetection. Multi-
interval detection behaves significantly better underdased sensitivity. For

7.6 Discussion 103

the original and modified Witty worm, the observed numbeesexcellent,
even with increased sensitivity. This difference is duégtronger changes
Witty caused in the traffic entropy profile, because of its enaggressive
scanning strategy and hence higher spreading speed. Noissugly, slower
worms may take longer to detect reliably.

The detector for the modified Witty worm had moderately wansarac-
teristics than the one for the original Witty worm, namelyighter number of
false positives. The likely explanation is that the portfibecof scan traffic
for the modified Witty worm closely resembles common portnscalhese
can then trigger the modified Witty detector if its sensitivs high enough.

Sample Entropy vs. Entropy Estimated by Compression

For the Blaster measurements, the detection results eltaith sample en-
tropy and with entropy estimated by LZO compression are samnjlar. One
difference is that the LZO based detector at sensitivitgll@v0 is a bit more
sensitive to one specific, repeated high-intensity scanaativity at the end
of the validation data interval. We have stated the obsenueabers of false
positives with and without this specific scanning activity.

For the Witty worm, the number of false positives are modgyatorse
for LZO estimated entropy than for sample entropy. In additidecreasing
detection thresholds has a weaker effect with LZO compoessie. for a
specific sensitivity, LZO compression based detectionadigtuneeds more
Witty flows than sample entropy based detection. Howevehaih cases
the results are very good and a significant increase in sgtysis needed to
produce any false positives at all for the half year of refeectraffic data.
The same effects can be observed for the modified Witty worereldgain,
the sample entropy based detector performs better.

The results obtained demonstrate that LZO compressionsf@malid
alternative to sample entropy when estimating flow-streatnopy profile
changes. Since LZO compression offers a moderate speechiempent and a
smaller memory footprint (see Section 5.3) in compariscsetople entropy,
using LZO compression can have significant benefits in praldtinplemen-
tations.

104 7 Detector Validation

Increasing Sensitivity

Increasing detector sensitivity increases the likelihobthlse positives. We
utilised division of the detection thresholds by constaatdrs in our mea-
surements, i.e. the same decrease in the individual detetbieshold values.
An alternative strategy is to calibrate the detector on amautbreak event of
smaller magnitude. This could potentially increase deiadjuality and can
be used for applications where a simple constant factoitsétysincrease is
not good enough. The better result quality comes at the pfibaher effort,
since the measured or simulated worm traffic data has to beela

7.7 Simulation as a Validation Tool

Using synthesised data or simulation to validate an anodtlyctor is prob-
lematic. An example of a dataset that may have contributéde@evelop-
ment of IDS systems that have trouble dealing with real tafita because
of its, among other things, failure to provide a realistisddane, is the MIT’s
Lincoln Lab data from 1998 [64, 70].

If simulation is used to validate a worm detector design, &spects are
critical:

e The worm traffic must be simulated realistically

e The baseline traffic must be simulated realistically

Simulating worm traffic is not too difficult, if a realistic wim model and
a realistic Internet model are available. We present onsilplesapproach in
Chapter 3.

Simulating realistic baseline traffic for the evaluationfalise positives
is harder. One possible approach [18] that is currentlyd@inestigated, is
to identify traffic features of real traffic and then to re-#esise this traf-
fic with similar characteristics. This however still needalrtraffic with the
desired characteristics, which is a significant drawbaicicesthe real traffic
data could be used directly for validation with less effartlanore accurate
results. At the same time, it is currently unknown if the yetbesised traffic
will have realistic characteristics with regard to falseitiges in a worm de-
tector. The main motivation for this research activity isréfore not to allow
simulation but to provide anonymisation of a network flowadzt, in order
to deal with privacy restrictions.

7.7 Simulation as a Validation Tool 105

Whether simulation of a realistic baseline is feasible withesing a set of
real traffic observations as a basis, is currently unknowit.were feasible,
the simulation results would still need to be compared toltegbtained with
real traffic to demonstrate that they are realistic. Othsewthere is a real
possibility that simulations will provide results the exipgenter expected or
desired, rather than meaningful ones. This again meansradiid data has
to be available and the simulation is, again, not really edexhd the second
best choice. For these reasons, we are convinced that dtntigighere is
no adequate substitute for testing backbone worm detestorseal baseline
traffic.

Chapter 8

Conclusion

We have identified traffic entropy changes present duringptiopagation
phase of fast Internet worms. The changes were analysectethoadly and

measured on real traffic from a high-volume network. Theghts gained
have been used to build a real-time capable detector fotrfeeinet worms
that has low detection latency, a low rate of false positasd low resource
needs. The detector scales well and is suitable for rea-tinline use on
very fast networks. Validation of the detector design hanlsone using an
extensive set of real Internet backbone flow-level traffimda

8.1 Review of Contributions

Design, build and operate a NetFlow data capturing system fahe
SWITCH network (Engineering)

Since no NetFlow data capturing, transport and storagevaodtsuitable for
the purpose of of this work was available, we designed andeimgnted a
suitable system. The capturing system handles all taskéving capturing
of the NetFlow UDP datagrams streams to file, compressiorirandport to
long-term storage. Significant effort is spent on fault tafe¢ operation and
automatic recovery in case of errors and system outages.ollem with

packet loss in the UDP datagram stream, due to very fast dptatebursts
and too small socket buffers in intermediate hosts rejtigathe datagram
stream, was analysed and solved as well.

108 8 Conclusion

The capturing system has been operational without majagest since
the beginning of 2003 and is still perfectly adequate to @kt In Oc-
tober 2007 the total amount of data captured and stored wast &0TB
compressed (an estimated 90TB uncompressed withh#ip@ compres-
sion used), which corresponds to roughly 1’800 billion vridiual NetFlow
records, captured over a time of approximately 41°000 hothe capturing
system is described in Appendix C and in [107,111].

Design and implement NetFlow data processing libraries antbols
(Engineering)

At the beginning of this work, the available toolsets anddites for handling
NetFlow data were not suitable for processing large amoointtata or had
a primary focus on forensics. Forensics is generally noteored with the
overall picture, but focuses on a small number of specificslmstead. Anal-
ysis with forensic tools is typically done interactively &Byhuman operator.

The DDoSVax project and this thesis are specifically nogtiznd at foren-
sic work, since that would violate agreements with the taféita source used
(SWITCH) and could violate Swiss privacy laws. As a consegaeme cre-
ated a NetFlow data toolset and associated libraries,bdeifar batch pro-
cessing of very large datasets with a focus on more abstedfit {properties.
It forms the basis of all NetFlow processing work done in thissis and has
proven to be perfectly adequate to the task. It is suitabliafge scale analy-
sis as, for example, the validation work done in Chapter wshwhere half
a year of traffic data was processed at a time.

The toolset is described in detail in Appendix A. It has alserbused in
other research activities, for example [20]. A public rekeas Free Software
is in preparation.

One component of the toolset, namely the transparent casgiefile
reader librarycfiletools , has been added to RIPE [1] RIS raw data toolset
libbghdump , adding support fobzip2 compressed BGP data files.

Create a worm simulator to better understand worm characteiistics
(Engineering / Science)

In order to understand what limits propagation speeds ofifisgasrnet worms,
we saw a need for a simulator that could realistically sireukn Internet-
wide worm outbreak. No such simulator was available, andé&ere created

8.1 Review of Contributions 109

one as part of this work. It uses an Internet model that cewinghe speed of
the “last mile” Internet access connection statistics ahbasers and proved
to be able to realistically simulate known worm outbreaks,to the time
when network saturation sets in. When saturation effectstetappear, re-
alistic simulation becomes very difficult, since Internetwork behaviour at
saturation is very hard to predict and dependent on thefgpebaracteristics
of the traffic causing the saturation. In measurement datalseeobserved
effects of manual intervention during worm outbreaks, sagmstallation of
network filters, that a simulator cannot predict. Since weewgimarily in-
terested in the early behaviour during worm propagatioe, tduour interest
in early detection of fast Internet worms, the simulator paectly adequate
for our purposes.

The simulator is described in Chapter 3 and was the subjecpablica-
tion [110].

Model the entropy-effects of fast Internet worms theoreticdly (Science)

We were able to model entropy effects during worm outbrealksjualitative
fashion. During a worm outbreak a lot of target IP addressesantacted.
Ordinarily, many of these would not have associated traffitce no hosts are
attached to them. At the same time the hosts doing these ciiomattempts
are few during the early phase of a worm outbreak. We were talddow
mathematically that this behaviour causes a specific impaéibw-level en-
tropy scores for IP addresses, specifically a decrease itesdB address
entropy and an increase in destination IP address entropsnt@ative pre-
dictions require realistic modelling of the baseline t@ffvhich is the subject
of ongoing research, see e.g. [19].

The theoretical foundation for the impact of worm propagatraffic on
Internet flow-level traffic data is described in Chapter 4.

Identify and quantify the effect the outbreak of a fast Internet worm has
on NetFlow dataset entropy scores (Science)

We made measurements on real traffic data from the SWITCH mletwo
which connects most Swiss universities and some reseantfese The ad-
vantage of this data is that it has a diverse traffic mix, als@ aontains a lot
of Internet traffic created by students. Observations dfifasrnet worm out-
breaks in this traffic data pool did confirm the presence oétiteopy changes
predicted by theory and allowed quantitative observatmfithese changes.

110 8 Conclusion

The measurements also served to identify baseline trafficackeristics and
ultimately lead to the fast Internet worm detector desigmictv is at the core
of this work.

Chapter 4 described the details of observations made onreaptraffic
data. The observed effects have also been described in [111]

Evaluate the suitability of compression for entropy estimaion (Science /
Engineering)

In order to explore the suitability of compression techeigjas an alternative
method of estimating entropy and entropy changes, we padorextensive
measurements comparing entropy estimated by sample grarabentropy
estimated by compressibility. The results show that cosgioa is a suit-
able method for estimating entropy changes in flow-levedrimgt traffic data.
While accuracy is worse than for sample entropy, the resuits/iable for
use in a detector for fast Internet worms. Memory consumpitiopartic-
ular is reduced dramatically, typically to a low and const@mount, while
computational effort stays very low.

Chapter 5 describes the use of data compression for entstipyaion of
flow-level traffic data. The evaluation in Chapter 7 shows thies approach
increases inaccuracy only moderately. The idea of usingpecession as en-
tropy estimator for the purpose of detecting fast Internatas was published
in[111].

The design of a detector for fast Internet worm outbreaks baed on
entropy measurements and evaluation of its characteristig (Science /
Engineering)

In order to allow detection of fast Internet worms in higteeg networks,
we created a detector that is capable of solving the detetaigk with high

accuracy, low latency and low resource needs. The detectuiiable for

real-time online-line use. The idea is to monitor localiskdnges in the en-
tropy profile of IP addresses and port numbers for specifioghaatterns.
The detector can be calibrated for different levels of deityi and worms

with different traffic port profiles. The number of false gogs can be low-
ered even further, if a slightly higher detection latencydsepted, by using
a multi-interval detector that tests for the presence ofmvecan activity in

several consecutive measurement intervals.

8.1 Review of Contributions 111

In addition the detector design allows easy combinatioriftéréntly cal-
ibrated detectors into clusters. One advantage is thag wgtectors with
different sensitivity levels can first provide very earlyteigion with low re-
liability, i.e. a high rate of false positives. The detenti@liability level can
then be increased by slower, less sensitive detectors. prbisdes a pre-
alerting capability. Clusters of detectors scale very ygitice the main effort
lies in the entropy estimation, which has to be done only qaedraffic data
stream.

The detector and its calibration procedure are describ&@hapter 6. Its
validation on real traffic data is given in Chapter 7.

8.1.1 Summary

We have solved both the scientific and engineering chalketigis thesis
work presented. A working, practical and efficient detedtorfast Inter-
net worms was designed, implemented and validated on edfi¢tdata from
a moderate-sized Internet Backbone network, using two-wederstood fast
Internet worm outbreaks as benchmarks. The detector ialdaifor real-
time online use. Measurements of CPU and memory consumgtiow that
the design scales to significantly larger networks, witltbatneed to reduce
data volume by sampling or other means. To reduce memoryoqution
further, we have demonstrated that replacing sample gntrgasurements
with compressibility scores obtained with a very fast dampression algo-
rithm can be used, with only a small impact on detection ¢yafihis allows
implementation of our detector with a very small memory poitt, as traffic
data can be discarded immediately after compressing edohdunal traffic
record.

At the same time, the core idea of the detector design hasexeenined
and explained theoretically. Propagation traffic from a fasernet worm
has a strong one-to-many property, that is not present ielibastraffic. In
addition, IP addresses that have no hosts attached to teeeive traffic from
connection attempts by the worm. A theoretical argumenivshbat if the
baseline traffic does not change and this type of traffic iedddit, the source
IP address entropy decreases, while target IP addrespgimiaeases. This
is consistent with observations made during real worm eatks. For port
numbers there is a similar effect, but it is weaker and carebersed or can
have similar impact on source and destination port field® rElason is that,
with regard to IP addresses, a few infected hosts allways toaeontact many

112 8 Conclusion

potential target IP addresses. For ports, however, eaelo$ithe connection
can either use a fixed or a variable port, depending on thesvathility used
and the preferences of the worm designer.

In conclusion, we have solved the problem of detecting fastrhet
worms in high volume networks, using only flow-level data. r@alution
does not require knowledge of the specific vulnerabilisgaéed by the worm
to infect target systems or its specific traffic charactiesstrhis makes a fully
generic detector possible. As an additional benefit, thetisol has low re-
source needs and very good detection quality with regardlse fpositives
and detection latency.

8.2 Limitations

Every scientific work has its limitations, and this one is roaption. We will
discuss the ones we know about below.

e The sensor we developed focusses on one specific approank|yna
detection on entropy-abstracted flow-level data. Othes@etypes are
possible and have been investigated. However, for a sfigatiy sound
analysis of a sensor type, it has to be evaluated on its ovior,doeom-
bining it with other sensors.

We submit that exploring the possible synergetic effectsomfibining

different, individually understood, detection technigtier fast Internet
worms represents a major scientific undertaking in its oghtri One
specific danger is over-fitting, i.e. customising pararsation tightly
enough to a specific benchmark data set so that the geneshlite

result becomes very low. Typically, more complex sensoesnaore
prone to over-fitting, since they can match the specific ctaristics
of a benchmark data set better.

For this reason, an evaluation of each individual sensoe,typ as
transparent a fashion as possible, is essential. We béliaveve have
reached this goal for the specific sensor type we presentadiwork.

e Our detection approach represents new and fundamentarcbs& he
impact of long-term changes in network traffic charactmssis cur-
rently unknown. Periodic re-calibration of the sensors mayeeded
in order to maintain sensitivity and a low rate of false pusg. It

8.3 Relevance of Our Results 113

would be beneficial to determine long-term changes in basdie-
haviour and their impact on entropy-abstracted traffic ipetars.

e Traffic data from small networks is more noisy, which leadsntore
false positives and limits applicability of our approachet@rmining
the actual differences between traffic data from small veluretworks
and large volume networks could serve to adapt our deteefigd to
smaller networks as well.

8.3 Relevance of Our Results

Most fast Internet worms fall into the time period from 2002005. Activity
has decreased significantly since then and no fast Interoehsvhad their
initial outbreak in the years 2006 and 2007 so far. One re&sarshift to
application-generated overlay networks. A number of IM{&mt Messaging)
worms were observed in 2005 and 2006. A second reason isagtdnhfernet
worms have lost their initial appeal to the people that wri@lcode simply
to see whether it can be done (and possibly to brag, as the afhe Sasser
worm author in May 2004 [5] shows). The technology of fasetnet worms
is now reasonably well understood. A new worm will just be enof the
same and not a reason to receive admiration from peers

A second reason is that fast Internet worms are the equivalenWMD
(Weapon of Mass Destruction). No precision strikes areiptesand collat-
eral damage is huge. This makes fast Internet worms ungeitabcriminal
purposes, since law enforcement will be highly motivatetrack the orig-
inators down. Any way to effect criminal gain. i.e. moneyfeo$ a very
good possibility of getting caught, since tracing money fieva tried and
true criminal investigation strategy. Consequentiallyminals using com-
promised Internet hosts have shifted to bot-networks inldse few years,
that are built up slowly and ideally in such a fashion that aleers of the
compromised hosts do not notice the compromise at all.

A third reason may be that easily exploited vulnerabiliiie®perating
systems have decreased, possibly as a result of the worrareigil seen
over the last few years. This does not mean that operatirtgragsare no
longer vulnerable. It just means that the competence lexetied for find-
ing a vulnerability and exploiting it successfully is highmow. Analyses

1We cannot imagine that writing worms or other malware works a&h strategy “to impress
girls”. Nonetheless, even more bizarre approaches to ttestipun have been tried in the past.

114 8 Conclusion

of past worms show that worm authors are typically not veofipient pro-

grammers, with the notable exception of the Witty worm authithere are
also still enough vulnerabilities left to make fast Intearm®rms an ongoing
possibility, for example see [4,43]. As the Witty worm deratrated, even
a small vulnerable population (about 15’000 hosts for Witign be enough
for successful deployment of a fast Internet worm.

We believe that these developments have made the deplowigambof
of concept” worms unattractive. Not only is a greater eff@tded, the recog-
nition gained is small. However, individuals and group«itrg global atten-
tion may in the future use fast Internet worms in an attempbtglobal dam-
age. Currently these groups do not seem to have the teclicallaigowledge
to create fast Internet worms. It is also possible that theriet is not yet
widely enough perceived as critical infrastructure to miakevorthwhile tar-
get of terrorist-like activity. Nevertheless, the groundriwhas been laid and
the knowledge on how to create fast Internet worms is oueth&tthe same
time, defences are basically non-existent. We submit tetgation technol-
ogy is a crucial part of any defensive strategy. Even if gffecdefences
prove impossible, successful and early detection of thechtincreases the
effectiveness of any type of damage-limitation since ina#i fast analysis of
what actually happened. The sensor presented in this waorkleg a signif-
icant role in early detection of attacks based on fast Ietieworms. It has
the potential to be widely deployed, since it is lightweight does not need
costly infrastructure.

8.4 Directions for Future Work

This work can be extended in several directions. We propueeftture ef-
forts are spent on the following tasks:

e Extend the detector to detection of other large-scale ahesiaesides
outbreaks of fast worms. Possible anomalies to be examaoretefec-
tion by entropy changes are massive scanning activity, iihgptype
attacks that use a large number of flows, because source tBsadd
are spoofed and randomised, and attacks against or scasgeftific
services.

e Specifically for general anomaly detection, it may be bersdfio com-
bine our detector with other traffic metrics and detectidresees. Syn-

8.4 Directions for Future Work 115

ergetic effects could be significant. As our detector is vespurce ef-
ficient, adding it to installations of other detectors anchitars should
be feasible without hardware and software upgrades in masgsc

e The toolset and libraries created are only suitable for etfversion
5. It would be beneficial to extend them to include handlingadality
for NetFlow version 9 [30] and eventually IPFIX [82].

Appendix A

The DDoSVax NetFlow
Toolset

The DDoSVax NetFlow Toolset was designed and implemented@sf this
thesis. In order to allow effective work with NetFlow datdyasic toolset and
library was needed. Design and implementation startedeabéginning of
the project. Optimisation and extension went on during ttogegt lifetime.
At the end of the work on this thesis, the created general INettools were
stable, reliable and efficient and had been used not onlhiwthesis, but also
as a basis of some of the work in the Ph.D. thesis of ThontdmeBdorfer [36]
and numerous student theses in the context of the DDoSVgeqpro

The toolset operates on NetFlow Version 5, the type of NetFkcords
collected in the DDoSVax project. All libraries and toole awritten in ANSI-
C with some GNU extensions. Currently the DDoSVax toolseiniy avail-
able upon request in a “research version”. An open sour@asel under
GPL/BSD dual licensing is in preparation.

A.1 Design Approach

The DDoSVax project aims both at near real-time procesdiiNgt-low data
and at offline processing of large data-sets for scientifalyais. The pri-
mary data processing modesseam processingvhere a stream of NetFlow
records is processed record-by-record, usually read frillm@r a set of files.

118 A The DDoSVax NetFlow Toolset

Tools may also read a sequence of NetFlow export packets thier®TDIN
stream, from a named pipe or from a TCP or UDP socket. Thedbdds
splitinto a library part, that encapsulates the NetFlow p&cific operations,
and a set of command line tools. The included command linis etow ba-
sic forms of data analysis and transformation and serveasgbe code that
demonstrates the use of the library. For new algorithmsusiee is expected
to create new code, building upon the library.

A.2 Architecture

A.2.1 Tool I/O and Interconnect

Most tools in our toolset read data from file, usually coritagriNetFlow ex-
port packets in the original export sequence. These filebeaaw or com-
pressed. Inthe second case, the tool detects the compfleg $ite extension)
and performs transparent decompression.

The primary means of stringing tools together into a longecessing
chains are the data stream interfaces offered by Unix-ljerating systems,
i.e. network sockets (TCP, UDP), FIFOs (named pipes, allrax domain
sockets) and th8TDIN andSTDOUTstreams. These interfaces can be used for
input and/or output, depending on the individual tool'sdtionality. Final re-
sults can also be written to file. The toolset contains a twfigw _replay)
that reads NetFlow packets from file and sends them via tharstinterfaces
mentioned above. This tool can be used to simulate realdimliee process-
ing with stored data.

A.2.2 NetFlow Version 5 Export

We now give a brief discussion of the NetFlow v5 binary forntefined by
Cisco [28, 29]. Note that Cisco keeps moving the informatarits website
and that sometimes in the past it has not been available #&althis reason,
we replicate the relevant information here.

Packet Format

NetFlow v5 data is exported as a stream of UDP packets. THesfsacontain
a header, shown in Table A.1, and a number of flow recordsttirtiowing
the header. The format of the flow records is shown in Table AlPfields

A.2 Architecture 119

are exported in network byte order. Positions are specifidyyte-offset from
the beginning.

The field names are taken from the information available enGisco
website in 2003. Note that the names follow different comesrs, for ex-
ample capitalisedSysUptime), with underscoresuix _secs), direct word
combination {staddr) and possibly other, not too clearly identifiable con-
ventions. This mixture gives a strong hint to a not very wetfitcolled histor-
ical growth of this export format. In addition to the field defions by Cisco,
we will give our concrete experiences with each data field asifasted in
the SWITCH network data.

| Position | Name | Description \
0-1 version Fixed to 0x00 0x05 (i.e. Version 5)
2-3 count Number of flow records in this packet
4-7 SysUptime Current milliseconds since boot
8-11 unix_secs Current time (full seconds)
12-15 unix_nsecs Current time (residual nanoseconds)
16-19 flow_sequence Total flows seen
20 enginetype Type of flow-switching engine
21 engineid Slot number of the flow-switching engine
22-23 reserved Unused bytes, should be zero

Table A.1: NetFlow Version 5 Header Format

count: The number of flows in one flow packet can take any value between
and 30. The hardware engines in the routers typically use=d fixm-
ber of records per export packet, for example 27 or 29. Thevaoé
engines are more variable (software engines handle théaspeating
cases) and can use any legal number of records in an expéstpac

SysUptime: In theory, this is the export device system uptime in midise
onds when the flow packet was exported. In practice, thissvedems
to be the time when the header was created in router memorpawe
observed packets where this value was set to a time shoftygome
of the flow-end timestamps in the flow records of the same padkgs
value is an unsigned 32 bit integer and rolls over after rugh days.

unix _secs, unix _nsecs: This is the time-since-the-epoch timestamp that
corresponds to th&ysUptime field. While it has space for nanosecond

120

A The DDoSVax NetFlow Toolset

2Nt

| Position| Name | Description \
0-3 addr Source IP address
4-7 dstaddr | Destination IP address
8-11 nexthop | IP address of the next hop router
12-13 input SNMP index of input interface
14-15 output SNMP index of output interface
16-19 dPkts Packets in this flow
20-23 dOctets | Number of Layer 3 bytes in this flow
24-27 First SysUptime at start of flow (milliseconds)
28-31 Last SysUptime at end of flow (milliseconds)
32-33 port TCP/UDP source port number or equivalent
34-35 dstport | TCP/UDP destination port number or equivalé
36 padl Unused
37 tcp_flags | Cumulative OR of TCP flags
38 prot IP protocol number
39 tos IP ToS
40-41 _as Origin AS, source or peer
42-43 dstas Destination AS, source or peer
44 _mask Source address prefix mask bits
45 dstmask | Destination address prefix mask bits
46-47 pad2 Unused

Table A.2: NetFlow Version 5 Record Format

precision, it seems to have millisecond resolution or ctosie. This
value can be used together wiizsUptime to calculate the actual start
and end time of exported flows. The stated time may be slidigly
fore the packet was exported from the router, just as theevaluithe
SysUptime field.

flow _sequence:

A per-engine counter of the number of flow records ex-

ported so far. Note that there is typically more than one fleword
in an export packet. This field can be used to determine whétves
were lost in transfer to the collector. In the SWITCH netwaéme-
times export packets do not arrive in the correct order atdtiector.

engine _type, engine _id: The engine _id identifies the flow engine a
packet was exported from. Theagine _type is supposed to identify
the type (software, hardware) of flow engine as well, but wesvwm-
able to find a concise definition of its meaning.

A.2 Architecture 121

sPkts, sOctets: Take care that these numbers may not describe the com-
plete flow length. A flow may be cut because an export condgiarh
as idle-timeout, maximum-duration or low router memory nheye
been reached. The rest of the flow will then be exported lafart
flows are not specially marked and heuristics have to be asddntify
them. UDP and ICMP packets are sometimes aggregated int@phaul
packet flows, but not allways.

First, Last: These values are the flow start and end timestamps, given in
the same fashion as ti&ysUptime header field. As these values are
32 bit unsigned, theast value may have rolled over while tlidrst
value has not, hence giving the appearance of flow-end béfiwe
start. Both values may also have the same value, typicatlgifgle
packet flows. In the SWITCH network, the accuracy of the sbamt$-
tamps is typically high enough to identify which side of ailedtional
connection was the connection initiator.

port, dstport: These values give connection source and destination port
for TCP and UDP connections. For ICMP thstport and/or the
port field are supposed to contain the ICMP type and code. We have
observed this in some instances, but almost all ICMP flowsh@n t
SWITCH data have a of type 0 code 0 (Echo Reply), without corre-
sponding type 8 code 0 (Echo Request) ICMP flows. We beliese th
only the software engines set these values correctly forRCM

tcp flags: This fields is zero in the SWITCH data. It is a big point of dis-
satisfaction with security researchers and practitiottexsmany Cisco
routers do not export TCP flags. Aparently, this behavioartstl in
2002 and is due to performance considerations. The flagsdwmeil
useful to identify connection initiators and other thinfis, example
flows containing only an RST packet in one direction.

tos: As far as we know, théos field is always zero in the data exported
from the routers used by SWITCH.

_mask, dst _mask: These are the lengths of the respective masks in bits.

Time Handling

NetFlow v5 time reporting has some intricacies. The exgoretof a flow
packet is given as unsigned 32 bit value in milliseconds ftbetime the

122 A The DDoSVax NetFlow Toolset

exporting device was started. Flow start and end timestaampgiven in

the same way. The export time is also given as time-sinceploeh with
nanosecond precision and millisecond resolution. Thdasadbnd fields roll
over after roughly 50 days system uptime. Export timestamayg actually

be after or beforethe individual flow record start and end timestamps. These
factors make time calculation using the 32 bit milisecorunfat error prone.
The NetFlow library uses 64 bit signed millisecond valueséepresent all
timestamps internally and provides reliable routines taveat the NetFlow

v5 time representation to this format.

The option to reduce timestamp resolution in our NetFlowspoas, for
example, done in earlier versions of the SILK tools [45, 94s rejected, be-
cause millisecond resolution is just about precise enoagletermine which
side initiated a bidirectional network connection.

Export and Aggregation Modalities

From our observations, the SWITCH network routers exporta flecord

when one of several conditions is satisfied. If a flow recosltieen exported
and more network packets belonging to the same connectéoresn later,
they are exported in a new flow record. Note that NetFlow paekport

speed is not uniform over time. The routers seem to segmeintrttemory

and do flow export individually for the segments in a roundindashion. We
know of the following export conditions:

e A TCP connection is idle. Around 30 seconds idle time is resliio
trigger flow export.

e A TCP connection was closed. This condition uses only orectdon
of a connection and is satisfied if a FIN or RST flag is seen.

e The connection duration exceeded a threshold. At the bigjnof
the DDoSVax project, this threshold was 15 minutes for theehvare
engines and 30 minutes for the software engines. Late in,200@s
changed to a consistent 15 minutes on all engines. Noteltisatdalue
is variable in practice. Long flow fragment lengths betweé¢minutes
and 16 minutes need to be expected.

e A UDP or ICMP packet is typically exported as a single flow meto
Aggregation can happen for fast packet sequences.

A.3 Library Components and Tools 123

e Low memory in the router can also be a factor and can causg earl
export of flows that have not yet met any of the other exportitams.

A.3 Library Components and Tools

Derived from the stream processing model, the basic modpearfation is to
process one NetFlow record at a time. The NetFlow librarysdue deal with
sets of records, although there are containers that careldeaistore and ma-
nipulate such sets. The most important library componemtslacumented
below. When writing the code, we took care to use a clean sireicnd
comprehensive in-code documentation in order to facditestage by others.

The DDoSVax NetFlow Toolset is under dual-licensing, it ¢enused
both under the GPL Version 2 [48] and the modified BSD licef@.[The
original copyright holder is the author of this thesis.

Library Components

Each library is represented by a setofand.h files. The former contain the
actual code, the latter the definitions and documentatidre fames given
below are the prefixes of the filenames of a given library camepd.

netflow _v5

This library component contains the basic flow handling fioms and
the data structures for flow representation. NetFlow expmatkets
can be read and stored istruct netflow _v5_header and struct
netflow _v5_record data structures. It is also possible to re-synthesise bi-
nary export packets from NetFlow headers and records. Amitapt func-
tion is netflow _v5_timing that, given a flow header and record, calculates
start-, end- and export-time in time-since-the-epoch &irwith millisecond
precision. In addition, this library provides functionsaonvert flow data to
different printable representations.

ip _match

This library component provides a data structure that altie definition
of sets of IP address ranges and testing IP addresses forersnp Ad-
dress sets can be read from a textual representation. The@WH ranges

124 A The DDoSVax NetFlow Toolset

(AS559) are predefined. The provided functions are intedédfor address
sets that consist of a relatively small number of linear adslranges, such
as a set of subnet addresses. Address set manipulatiorciedégion is not
supported.

ip _table

In contrast tdp _match , ip _table is a data structure optimised to represent
large, unstructured sets of IP addresses. It is has theidmadity of a bit-
vector with 22 positions and is implemented as a two-level tree with a worst
case memory need of 576MB plus memory management overheaul -
tional 160MB with libc6 2.3.2.ds1-2). The table supportsariion, deletion
and element count efficiently. Following ideas from objettoted software
construction, the table is multi-instance capable.

hashed _table

This is a general purpose hash table. It is multi-instanpeloie and supports
true deletion, i.e. the memory allocated by the table sisnimken enough ele-
ments are deleted. Keys can be any binary object and areccopimsertion.
Care must be taken that some compilers pad structures wjitedictable
data, making them unusable as keys. Structures intendesldsdnl as keys
should be converted to binary strings first. Elements caridyed directly if
they fit into the space of eid * or can be referenced otherwise. The table
does automatic re-hashing when the number of elements gnostsinks and
allocates or frees memory accordingly. The default hasietfan is from the
SGI C++ STL Library [100] and efficient for general data [LOThe user can
also supply a different hash function.

collection

This library component supplies two containers for lingartumbered se-
guences with array-like access but dynamic size. Elemestgo@ * as
in the hashed _table . One of the implementatiomyrayed _collection is
based on native arrays. The othimked _collection uses linked buck-
ets. Both containers are multi-instance capable and haaetlgxthe same
interface and functionality, except for creation. The Wdiial operations can
have different time complexities for both implementatior&orting with a
user-supplied comparison function is supporte®inlogn) time.

A.3 Library Components and Tools 125

prio _queue

This implements a general-purpose priority queue basedh&ap represen-
tation. Priorities must not be changed for elements of treuqu Objects are
stored awoid * . Priority is implemented by a comparison function the user
has to supply upon data structure creation. The heap isdsioran array
that is dynamically resized when needed. Phie _queue is multi-instance
capable.

mt19937

The Mersenne Twister MT19937 [68, 69] is a high quality PeeRdndom
Number Generator (PRNG). It is included in the toolset, sIRRNGs in C
libraries are frequently of low quality. Using this portaldenerator avoids
problems and removes the need to evaluate PRNGs provideglatf@arm.
This implementation provides pseudo-random values in d¢ine fof 32 bit
integers, 31 bit positive integers, reals (IEEE 754 “Sirgtecision”) in the
rangel0, 1) with full 23 bit resolution and doubles (IEEE 754 “Double €Eire
sion”) in the rang€0, 1) with full 52 bit resolution.

cfile _tools

The “Compressed File Tools” offer functions for transpagereading com-
pressed and uncompressed files. File access is analog tindrg btream
input functionfread from the ANSI C standard. Reading lines is supported
as well. The file compression type is deduced from the filengirren. At the
moment, uncompressed, gzip and bzip2 formats are supported

Errors from the compressors and errors from the underlyilegpyfs-
tem access are unified into one mechanism and accessibleeviarictions
cfr _error to query stream error status acfd _strerror , to obtain a print-
able description of the error status.

Command Line Tools

Several command line tools are contained in the DDoSVax INetEoolset.
They serve as a basis for simpler analysis work and as exarogésfor the li-
brary. To this end, the code is carefully documented, evangjexplanations
about non-obvious NetFlow data properties. Tiflow _to _text tool, in

particular, turned out to be very useful to facilitate expilag the NetFlow

126 A The DDoSVax NetFlow Toolset

data structures to students. There are also several titet@mnplates”, i.e.
code templates that read NetFlow data and present eacldratarspecific
place in the code in a set of variables. These serve to grgatiyd up the tool
creation process. All tools can be called with command lipgom “-h ” to
display a summary of the available options. In additiongsavmore specific
tools were developed for research applications. As theserly “research
quality”, they do not qualify for inclusion in the generabteet.

netflow _to _text

This tool reads one input file consisting of NetFlow v5 paskatd displays

them in various ways. It can also read fr&TDIN. One of the display formats
is the complete header and record information on multiplesi Several other
formats print each record on a single line. These formatesgpecially useful

for processing and filtering via scripts written in Perl ottiyn, and with shell

commands likegrep , sort andwc.

netflow _iterator _template2

This template is basicallyetflow _to _text with the output section removed.
All NetFlow headers and records, together with timestampuirectly usable
form, available at one place in a loop. The loop is carefutigumented and
includes sample output statements, demonstrating thepdaparties.

Note: Originally there was aetflow _iterator _template , but it was
not very structured and eventually removed and replacetlisygmplate.

netflow _iterator _template3

This template is similar toetflow _iterator _template2 , but can read and
process a series of input files.

netflow _replay

This tool can be used to replay a NetFlow data file, for exartppmulate
real-time processing or to split data processing over s¢versts. It reads
data fromSTDIN or file and sends a stream of NetFlow packets alternatively
to a UDP socket, a TCP socket or a FIFO. Replay speed can baestraioed,
with a specific inter-packet delay or a delay that is derivednfthe original

A.3 Library Components and Tools 127

export timestamps in the netflow packets multiplied by adacFigure A.1
gives an example usage scenario.

netflow _replay _mult

This is a wrapper-script that usestflow _replay to replay a set of files in
lexicographic order of the filenames. All options besides filenames are
passed toetflow _replay .

netflow _mix

Thenetflow _mix tool can be used to mix two packet streams according to
the NetFlow export timestamps. The data is read from two EI§®en on

the command line and written ®'DOUT The output can be sent onwards by
usingnetflow _replay , redirected to file or processed by a tool reading from
STDIN. Figure A.1 shows an example scenario.

Input File Set 1

o~

Named Pipe 1
netflow_replay_mult

STDOUT to UDP Stream
netflow_mix netflow_replay
Input File Set 2 STDIN

. netflow_replay_mult
/ Named Pipe 2

Figure A.1: Example usage afetflow _mix

netflow _sample

In order to allow exploration of the impact of sampling, ttosl reads Net-
Flow data from file and writes a sample to a target file with &rgiven by

the user. The target size will not be exactly as expectedesirach indi-
vidual record will have the same probability of being droghpén this way
artefacts in the input data, like nonuniform data exporth®yrouters, do not
influence the sampling scheme. The usable sampling rateti®irange of
one in 10...1'0000000 records. The mt19937 library is used as a source of
randomness, initialised frofideviurandom

128 A The DDoSVax NetFlow Toolset

netflow _port _stat

This is an example application that generates traffic sizifor a specific
TCP or UDP port.

netflow _prot _stat

This is an example application that counts flows, packetsbgtes for TCP,
UDP, ICMP and other traffic.

netflow _hosts _stat

This is an example application that generates traffic sizgisor each host
seen in the set of input NetFlow data files.

netflow _ip _count

This is an example application that counts the number otuifit IP ad-
dresses seen in the set of input files.

netflow _head

This application cuts down a NetFlow data file to a set of exfmmd at its
beginning.

netflow _split

This tool allows splitting NetFlow files that consist of theperted data from
several routing engines into separate files. It is custairicehe SWITCH
data. There are two instance®tflow _split 19991 for data sent to port
19991 on the capturing system amgiflow _split 19993 for data sent to
port 19993. Since the NetFlow export packets do not contaginator in-
formation, the sender IP addresses of the collected packeted by the
collector in files named the same as the packet files but widnsionstat
are used.

A.4 Notes on Performance 129

A.4 Notes on Performance

Most of the NetFlow data files used in the DDoSVax project amgressed
with bzip2 [24] (see Appendix C for a discussion of compresd@rnatives).
As a consequence, decompression forms a significant pastitre overall

processing effort. On average, the DDoSVax project captabaut 650MB
of bzip2 compressed data per hour (as of December 2005, Isoeighivalent
to 2GB of uncompressed data). On a SCYLLA cluster node (sqeAgix

B), with the data presen on the local disk, this results ingiteeessing time
examples given in Table A.4. Data properties are not cohstath disk per-
formance is dependent on file placement. Therefore, theseefigshould be
regarded only as rough approximations.

Activity CPU time | elapsed time
read compressed data from disk - 15s
read raw data from disk - 44 s
decompression 162 s -
data parsing 36s -
netflow _sample , 1 in 1’000’000 174 s 174 s
compressed input, output to file

netflow _sample , 1 in 1°000’000 8.6s 44 s
raw input, output to file

netflow _to _text full output 313s 313s
compressed input, output to /dev/null

netflow _to _text full output 242's 243s
raw input, output to /dev/null

Table A.3: Processing 650MB bzip2 compressed data on SCYLLA node

A.5 Lessons Learned

e Time handling for NetFlow v5 data is non-trivial and has hidden pit-
falls. Encapsulation into a library that calculates a snglear time
value for every time field in the flow header and record is ingoatrto
facilitate time handling, especially for novice (studedgtFlow users.
The internal time format in the DDoSVax NetFlow toolset, rdyn
time-since-the-epoch format with millisecond resolutgiored in 64

130 A The DDoSVax NetFlow Toolset

bit signed (long long) values, has proven to be adequatdnfestamps
in the raw data have only millisecond resolution, a highsohetion for
the internal format would not have been an advantage. A loesy-
lution would have been problematic, because millisecosdlution is
just about enough to determine originator and respondetwdasided
connection.

e The examplesand thecode documentationturned out to be well
suited to allow students using the DDoSVax NetFlow data tckiy
understand the nature of the data and the usage of the to&spe-
cially thenetflow _to _text tool was very valuable, as it allows low-
effort access to the raw data in a human-readable format.

e Processing speedf the toolset is adequate, given the availability of a
computer cluster. With more limited resources (e.g. a singdrksta-
tion) data-reduction as a preprocessing step would have resv/oid-
able and many of the results of the DDoSVax project couldyiket
have been obtained.

e Library versatility is adequate for research. The tools created are not
intended to for a complete set, but are basic tools and exasript
library usage. This approach worked well in several stuttesges and
can be regarded as a success.

e The primary performancbkottleneck is CPU and not 1/O, contrary to
the experience of other projects using (uncompressed)ldVettfata.
Overall this turned out to be beneficial, since it allows ritisition of
computations on several computers when the data comes feimgle
file server. The relatively high base CPU load from decongioesalso
had benefits, as it allows for a stronger focus on algorithmetionality
and limits the temptation to directly write highly optiméeode. The
problems of too early optimisation, such as far longer imp@atation
time, less code flexibility and a higher rate of code erromjla be
avoided in most cases.

A.6 Comparison to Other Toolsets

The SILK tools [45, 94] are another toolset for flow data asely They are
available under an open source license and are being dedtlopd main-
tained by Michael Collins and others. While the focus of thed3Max

A.6 Comparison to Other Toolsets 131

toolset is on non-interactive analysis and analysis ofdammounts of data
for research and monitoring purposes, the SILK tools foausnteractive
work by a security analyst.

The DDoSVax tools expect the user to write code to use thariis di-
rectly in order to do more complex analysis steps. This alseripted, large-
scale analyses. With the SILK tools, the user starts by setpa time frame
of records to work on. The set of selected records is therowad down by
filtering with command line tools that implement individymbcessing steps.
At the end, the analyst ideally has found a set of flow recdrdsdorrespond
to a single incident.

While the DDoSVax tools have the philosophy of doing as mucpaoss
sible in memory, the SILK tools use the disk as intermeditdeage. For
example, determining the IP addresses in a specific flowdsetend result
with the SILK tools will be a file listing all these address®éith the DDoS-
Vax tools, it will be a specialised hash-table in memory tlistt these IP
addresses and can be directly used for further steps. Bgpittoaghes have
advantages and disadvantages.

While the DDoSVax toolset and the SILK tools are designed tckvem
similar data, they are complimentary in their aims. The StbKls are aimed
at the security analyst that interactively determines titene and extent of a
particular intrusion. For that reason, the SILK tools airpitovide a complete
set of command line tools optimised for this usage. The DC&Wolset is
aimed at batch processing of large numbers of flows for rekgarrposes. It
provides libraries that facilitate creation of researabid@and includes basic
analysis tools and example applications. It does not trytici@ate what the
user wants to do in order not to limit the directions reseaaigo in.

Appendix B

Data Processing
Infrastructure

B.1 Motivation

The two primary reasons for building a dedicated NetFlovagabcessing

infrastructure were performance issues and security enac&letFlow data
processing creates significant disk 1/0 and often the disgeessent the main
limiting factor for the overall processing speed. This wiasdts with the ex-

isting computing infrastructure that primarily relied oentralised storage on
file servers and was designed with computationally-intentisks in mind.

The second concern arose because the data collected istpdiby Swiss
privacy laws and special care in handling it needs to be ebdeiThe easiest
way to implement a good level of protection was by creatioa dedicated
system that is accessible only to users that are authosedrk on the data
in question.

The cluster system described here was in operation fron2G08 to mid
2007. It was named the “Scylla Cluster”, after the Scyllatuee from Greek
mythology. Scylla is a sea monster, with six long necks gugdpwith grisly
heads.

134 B Data Processing Infrastructure

Remote Reset
nol <——— aw4

Test
Node <

File and Login Server
n02

aws
—>
: l«———>» Internet
-
File Server,

Debian Mirror
n22

aw3
Cluster Nodes Unmanaged Gigabit <
Ethernet Switch
(Simplified) Data Transfer Server

Figure B.1: “Scylla” cluster structure

B.2 Structure

The primary cluster structure is given in Figure B.1. Thenretao servers,
aw4 andaw5, that take the role of file-servers and have Internet corntct
The first oneaw4, also doubles as a log-in server. In the standard configu-
ration, users can log in to the cluster nodes frawd without giving a pass-
word. Both connect to a private Gigabit Ethernet networdt forms the only
network connection of the 22 cluster node R10%-n22. The nodes all use
identical set-ups and similar hardware. The first o8é, has a remote reset
capability and serves as a test-node. The actual intermabrie is imple-
mented using one 24 port and one 5 port commodity GigabitrB&tewitch.

B.3 Software and Configuration 135

The data transfer systermw3 (see Appendix C for its function), is connected
to the internal network of the cluster as well. This allowstfaccess to the
last 4-6 weeks of captured data, availableaof.

B.3 Software and Configuration

All systems in the cluster run Debian Linux. The nodes cannstalled
automatically using FAI (Fully Automatic Installation,J}). Installation of a
new system on all 22 nodes is possible in less than 10 minutes.

Originally the cluster was also running OpenMosix [77], elhfeatures
automatic load-levelling and process migration betweestesys. However,
due to problems with hardware support and lack of developn@penMosix
was removed later.

All data partitions in nodes and servers are exported on rikerrial
network via NFS and mounted on-demand by the Linux kernedllauto-
mounter. The advantage is that if a system becomes unaeadabl then
available again, there is no need to manually mount exposta bther sys-
tems and non-available exports will not cause the systerarng.h

B.4 Hardware

Year || Servers (total)) Each Node
2003 800GB 120GB
2007 4.7TB 200GB - 250GB

Table B.1: Initial and final available cluster disk space

The cluster nodes have one Athlon XP 2800+ CPU, 1 GB RAM and,
initially, one 120GB IDE disk. The file servaw4 has two Athlon MP 2800+
CPUs, 2 GB RAM, a PCI-X bus, and, initially 600GB of availalité&ID5
space. The other serveww5, has the same hardware as the cluster nodes,
but provides an initial available disk space of 200GB in a BRkarray. All
RAID is Linux software RAID.

Over time, the storage space on the nodes and the file sevedre@d The
file servers needed more space to store interesting datadlg@nd analysis

136 B Data Processing Infrastructure

results. For example, the data captured around a worm @ktlereent would

be made available on a file server, in order to avoid the tioreseming trans-
fer from the tape library. The nodes were extended by adtitidisk-space
as well, as projects started to need more space for the aldtealinder anal-
ysis. Table B.1 shows the initial and final disk space aviglam the file

servers and cluster nodes.

B.5 Security Concept

The primary security measure is to restrict open ports orsémeers to the
SSH port (Secure Shell, port 22/tcp) and block all otheragishe Linux
kernel firewall. Log-in is done only using SSH certificategptevent pass-
word guessing attacks. Within the cluster, only ordinamgusity measures,
such as using a reasonably current system installatiorysa@. We expect
that, within the cluster, an enterprising user can elevat®hher privileges
with moderate effort. Since all users on the cluster are imgrkvith sensi-
tive data anyways, we do not consider this to be a signifidaeat. On the
user side, especially student users doing a thesis, arecddinat the data
they are working on is subject to Swiss privacy laws and thgtraisuse can
lead to personal legal consequences for them. In additiay, are allowed
only to log in to the cluster from one machine with a currerd armaintained
Linux installation with firewall settings that block all azss from the outside.
Students that need more connectivity or want to run an aten OS are
provided with a second computer.

During the operation time of the Scylla cluster, there wassacourity
breach that we are aware of. The only potential incident wagsecure
SSH implementation in Debian, which needed to be replacedrbglder,
non-vulnerable SSH implementation for a limited time. Thloiv-up sys-
tem, that replaces the Scylla cluster, uses the same seconitept.

B.6 Experiences and Lessons Learned

We encountered several noteworthy operational issuenglthe lifetime of
the computer cluster. These were mainly hardware issuexddition, some
software concerns did arise in connection with the hardwesblems.

e The selected network cards were running relatively hot. Aasnee-

B.6 Experiences and Lessons Learned 137

ment with an IR thermometer revealed a surface temperatan®ond
65C. Estimating the expected lifetime of semiconductordifiicult

without exact manufacturer information. One possible genap-
proach is to use a lifetime of 30 years at 25C and to derate bgtarf
of 2 for every 10C more. This would give 2-3 years expectestitife
for the cards. Since the cards were the fastest reasondbddmards
available at the design time of the cluster and since the faaturer
(Netgear) gave 5 years warranty, we decided to use the cayusg

Not unexpectedly, we lost the first card after about 2 yeadsitawas
promptly replaced under warranty. After 3 years we had |dst more
cards and Netgear never replaced them. To resolve the issued to
replace all networking cards with a different brand.

A similar issue arose with the 24-port Gigabit Ethernet shitalso
manufactured by Netgear. It failed after 2 years with défegborts.
The replacement failed again 1.5 years later, and it turngdambe
nearly impossible to get a warranty replacement. When wedrafter
several months, it was defective. To resolve the, issue @edi@place
the switch with a different brand.

These problems lead to packet loss and link loss issues othputer
cluster. One main effect was that remote volumes mountedNFa&
would sometimes become unresponsive and hosts needed tartoe m
ally rebooted. This issue was resolved by using NFS over Siad
of the default UDP. In addition, we replaced static NFS meuwwith
automounted ones.

¢ We encountered failure of two PSUs during the cluster'sitife. Con-
sidering that 24 machines were running 24/7 for about 3.5sydais is
an acceptable rate.

e We were hit by the bad capacitor problem [3, 14], now some&time
known as the “Capacitor plague” in one server mainboard. riaeu-
facturer sent us a mainboard with the same bad capacitoepbxce-
ment and we had to fix the board ourselves with quality comptsnét
performed fine afterwards for several more years.

e We did not experience any disk-crashes, besides a small euimb
one shipment where the packaging had been destroyed by tiss Sw
postal service. All problems were noted before data lossroed due
to regular S.M.A.R.T. [99] monitoring.

138 B Data Processing Infrastructure

e We had one RAM module (out of 44) with a “weak bit”, i.e. a bit
that occasionally lost its state. It took significant efftotfind the
affected module, also because of the automatic processatioigrof
Open Mosix. Applications would typically not crash, but ogjppyrong
results with the frequency of one error per several days ofprding
time. This problem contributed to the decision to abandoardosix
and to operate the cluster without process migration betite@odes.

The main lesson learned is that handling large volumes @ dajuires
extra care. Data corruption can be introduced in RAM, in bssi® unreliable
CPUs and in other places. Itis necessary to expect occasimmaption and
to be able to deal with it. Since our data on tape is stored cesspd and the
compressor has its own checksum mechanism, recognisiagcdatuption
introduced in long-term storage is relatively easy but cotationally inten-
sive. When moving data, it is highly advisable to use add#@ia@mecksums,
for example created via thed5sumtool, to compare the data at the source
and the destination, before deleting the data at the sourhe.checksums
should then be kept at the destination to allow easy cheafdintige files, in
case errors turn up later. This measure not only improves idégrity, it
also helpts to isolate the source of any corruption and tititte diagnosis
and repair, if the corruption event is repeatable.

Overall the Scylla cluster performed well and proved adegjtaits task.
On the performance side, reading compressed NetFlow datedifile server
worked well for up to 6-8 nodes reading in parallel, depegdin the actual
processing done. When reading uncompressed data, one nddesaturate
a file server, which is not unexpected. Distributing largatadsets to the
local disks in the nodes was possible with low effort, usiagaedistribution
scripts that can run overnight. Reading data to be analysed the local
disks provided satisfactory 1/0O bandwidth even for largaks investigations.

Appendix C

Data Capturing System

As part of this thesis, we built a data-capturing systent,cbkects and stores
flow-level traffic data from the SWITCH [6] network. The datarfat used
is Cisco NetFlow v5 [9, 28, 29].

C.1 Objectives

The primary objective of the NetFlow data capturing systsrnoirecord the
NetFlow packet streams exported by the SWITCH border ro@seesbelow)
and to transfer the captured data to long-term storage. &sa@nslary objec-
tive, the data capturing system of the DDoSVax project sttie last four
to six weeks of captured data on disk for easy access. Sinamlyehave
limited human resources for the operation of the capturiragesn, primary
design goals were reliability and fault-tolerance. As asemuence, the main
paradigms used are simplicity and automated fault deteatial recovery.
An additional complication is that we could not place a hestidated to data
capturing in the SWITCH network and the packet capturing gsees have
to run with user privileges on a Linux host operated by SWITCH.

C.1.1 Data Flow

The basic data-flow through the capturing system is shownignré C.1.
The four SWITCH border routers export their data in two streafrNetFlow
version 5 [9, 28, 29] UDP packets. One stream is the combia¢al ekport

140 C Data Capturing System

ETHZ
SWITCH DDoSVax Project Infrastructure
| || \
2 * 400kiB/s ezmpl 2 * 400kiB/s ezmp2 aw3] jabba
UDP data UDP data 4 files/h 4 files/h
compressed
FE FE
GbE GbE 55GB 600GB
HDD HDD
Dual-PlIl Athlon XP Sun E3000
1.4GHz 2200+ GbE with
IBM 3494
tape robot
SWITCH "Scylla”
accounting Cluster

Figure C.1: Capturing system data flow

of three routerssiCEL, swiCE2 andswiBA2) mixed together, the other is
the data export fronswilX1 . In the SWITCH topology map (Figure C.2)
swiCE1 andswiCE2 are on the left (marked together @g). These Routers
provide connectivity to CERN, the CERN Internet eXchangefd&slobal
Crossing, Level 3 and the GEANT2 research network. On topgare C.2

is routerswiBA2 (markedBA), which connects the University of Basel, the
BelWue and the Swiss Internet eXchange point. On the topt sigle, there
is routerswilX1 (marked X , which provides connectivity to Telia, the Swiss
Internet eXchange point, and the Telehouse Internet eXEhpaint.

Two data streams arrive via Gigabit Ethernet at the bospl (running
Linux). ezmpl replicates the streams on a packet level. One copy is sent to
the hostezmp2. The DDoSVax NetFlow packet capturers runseamp?2 as a
set of user space processes. They collect the incoming UBk{zainto one
packet data file and one metadata file per hour and data stidemmetadata
contains the sender IP address and a timestamp for eachadpiacket. It
is needed to determine which router sent a specific NetFlakgtasince
NetFlow v5 does not identify the exporting router.

The data files are then transferred to the Linux lamed, which resides
in the ETH network and is operated by the DDoSVax project. fFaasfer
itself is initiated byaw3 using the secure shedth and the secure copy com-
mandscp (both from the OpenSSH project [78]). The transferred files a
compressed and copied to the tape librabpa . Jabba runs Solaris and
is operated by the Information Technology and ElectricajiBeering De-

C.1 Objectives 141

Legend [Mbps]

SWITCH traffic weather map Belie SWisslx
2006-02-24 16:15 average of last 00:30 hours

Lewel3
—

GERNTZ

Figure C.2: SWITCH topology (weather map) from www.switch.ch

partment (D-ITET) of ETH. In addition, a copy of the last 4 tavéeks of
compressed data is kept aw3 for quick access from the computer cluster
“Scylla”. “Scylla” forms the secure NetFlow processingradtructure of the
DDoSVax project. See Appendix B for a description of the “i&ycluster.

C.1.2 Data Properties

The captured data consists of unprocessed NetFlow v5 gacKéte data
export from the SWITCH routers is bursty and can reach giggiaeds. Af-
ter some modifications to the original SWITCH NetFlow transfgstem (see
Section C.3), the DDoSVax capturing system experiencesweny little data
loss. In addition, the SWITCH routers suffer very little flowsk. As a conse-
quence, the captured data forms an accurate and completépties of the
SWITCH network border traffic.

In order to understand the data handling effort needed, vasured typ-
ical NetFlow data volumes the SWITCH border routers generate fig-
ures given in Table C.1 are based on the data captured in toadeveek
of January, 2004. The given values represent a typicaltgituaThey re-

142 C Data Capturing System

Raw NetFlow Packets Compressed withzip2 -1
1 hour 2.1GiB 730 MiB
1 day 50 GiB 17 GiB
1 month 1.5TiB 510 GiB
1year 18 TiB 6.1 TiB

Table C.1: Typical SWITCH data volume (scaled, start of 2004)

Compressor Compressed Compression Decompression
Size CPU Time CPU Time

bzip2 660 MiB 1100s 410s

bzip2 -1 730 MiB 730s 200s

gzip 810 MiB 280s 32s

Izo 1.1GiB 41 s 13s

no compression 2.1 GiB O0s Os

Table C.2: Compressor comparison (1h data, Athlon XP 2800+ CPU)

mained fairly constant during the observation period {&tB2003 until start
of 2006). The observed volumes are scaled to different tivtervals to pro-
vide an overview of the date volumes to be expected.

C.2 Compression and Long-Term Storage

Since we have space constraints for data storage, all dadenigressed before
being transferred onto long-term storage. Originally dates compressed
usingbzip2 with default parameters. However, during some network &syen
most notably the Nachi.a worm, with its massive increasebiseoved flow
numbers due to ICMP target probing, the system load due tqozsrion
became too high and had to be reduced. Curreltiy? with parameterl

is used.

We considered the following compressors (all of which arlable un-
der the GNU public license):

e bzip2[24], amodern compressor based on the Burrows-Wheeler block
sorting algorithm and Huffman coding. It compresses weit,i® slow.

C.2 Compression and Long-Term Storage 143

e gzip [50] the GNU zip compressor. It is based on the Lempel-Ziv
method. Its performance and resource requirements aragevéer all
regards.

e 1z0 [66] the Lempel-Ziv-Oberhumer compressor. This compresso
family is extremely fast at the cost of compression ratio.

Table C.2 gives the expected compression performance akdti@fes
to be expected when processing typical data from the SWITCHor&.
Main memory consumption is low for all compressors (belowli&) and
not listed. The data sample is the same as in Table C.1. Tipidata analy-
sis will involve decompression but not compression. Cosgiaa is done by
the capturing system. The CPU load values due to compreasgogiven as
reference values for capturing system design.

One impact of using a CPU intensive compressor is that moasure-
ments done on stored data in the DDoSVax project are CPU badfitdout
compression, NetFlow data analysis is usually I/O bourd, ieading data
from disk is slower than processing it. Witlzip2 compression, a single
file server can deliver data ta 810 nodes doing analysis in the “Scylla”
computer cluster, before 1/0O becomes the limiting factdBed Appendix
B for a discussion of the characteristics of the DDoSVax cat@pcluster
“Scylla”.) As a consequence, a positive effect on softwasation was ob-
served, namely a weaker tendency to optimise analysisidlgm for speed
prematurely. Decompression of an hour of data takes aro0@d_PU sec-
onds. Optimising analysis algorithms to perform bettentttds number is
subject to fast diminishing returns. This curbs the oftesesbed implemen-
tors impulse to write highly optimised code, that hard to ifyoend main-
tain, too early in a project. Observed positive effectsudel cleaner software
structure, higher willingness to work with clean interfa@nd checked con-
tainers and generally a higher willingness to experiméantesimplementa-
tion work becomes easier and less time-consuming.

If very fast repeated processing of the same data is needediygpression
and storage of the raw data on disks local to the Scylla naglg®ssible.
Experience has shown that this is rarely done in the DDoSYapegt. Using
more cluster nodes is less work than writing more optimisatecand seems
to be conceptually and administratively easy to do for ota daers. It should
be taken into account, however, that most DDoSVax analysik ig done by
sequentially processing the data in a set of hour files inra@®btain a
global view of some data characteristics. For more forensitented work,

144 C Data Capturing System

i.e. following the activities of a single or a smaller set afsts in detail, a
different approach to data storage would be advisable olilslalso be noted
that our agreement with SWITCH does not allow us to do any &iosrwork
without explicit permission by SWITCH for each individualsea

Performance is not the only consideration for compresdecten. An
additional question is how much data is lost in the case oétitrs intro-
duced after compression. With the processed data volureeb#tomes a
concern. Thebzip2 compressor loses one raw data block (100 kiB ... 900
kiB, depending on the selected compression parameter)iperror. May
other compressors cannot recover any data following a tit.en the course
of the DDoSVax project, 5 bit-errors were found in the stodada for the
year 2004. This indicates that a different compressor eheinuld also have
been reasonable with regard to bit-error behaviour, at Eabong as data is
stored in relatively small files.

C.3 Scalability, Bottlenecks

C.3.1 Network and Operating system

The primary capturing bottleneck that can cause packetdabe CPU sched-
uler on the capturing system. When data is received, the sbciers start
to fill up. If the scheduler takes too long to assign the CPUh&dapturing
process, the socket buffer becomes full and the kernekgtadrop packets.

When we started the DDoSVax project, SWITCH experienced satee d
loss in its NetFlow export streams, in the order of up to ssveercent. We
found that the capturing and replication was done with thiaude socket
buffer size of 64kiB. At the same time, the routers exportat éh bursts that
could theoretically reach gigabit-speed and could fill upgbcket buffers in
a bit more than one millisecond. Our measurements (Tablg SB@w real
data bursts of up to 320kiB in a 10ms window. Due to kernelrieti&ins
on the host capturing the UDP NetFlow data stream, we coulcbbtain
measurements for shorter intervals. It is quite possibde the maximum
observed speed for a 10ms interval is not the top export sgaesk shorten-
ing the measurement interval leads to significant burstdspezease for all
measurements given in the table.

We observed idle times of up to 2 seconds between the burststdthe
10ms scheduling interval of the Linux kernel on the host wdpg the Net-
Flow packets, the socket buffers could frequently not beterdfast enough

C.3 Scalability, Bottlenecks 145

and packets were lost. To solve this problem, the socke¢bsife orezmpl
andezmp2 was increased to 2MiB. This is enough to contain severalrsco
of data and thus solved the loss problem completely.

C.3.2 CPU and Main Memory

The CPU requirements of the capturing system are low. In béee 2005,
we observed a total CPU load of about 2.4% with an Intel Xe@GHz

CPU. Since the capturing system runs on a host with two oft#Us, the
overall CPU load is about 1.2%. Main memory consumptionvgas well.

Besides the socket buffers, the main consumer is the budfeliecused for
disk writes. Neither are critical in our set-up.

C.3.3 Disk Storage Speed

Since we capture only two data streams on a lightly loadetgsysve receive
disk write performance comparable to the linear write penfance of the
filesystem. The capturing system uses a fast SCSI disk. Hoemis7200

rpm ATA disks can write in excess of 10MiB per second in re@liscenarios
today. This exceeds the NetFlow data delivery speed signific and hence
disk storage speed is not a significant concern in the DDo$#pturing set-

up.

C.3.4 Scaling Up Observations from SWITCH Data

Data export characteristics are not available to us frorréagers other than
those in the SWITCH network. We can only speculate about sitiyebased
on scaled-up figures derived from our measurements. Théneldtaumbers
can serve as a first approximation and give hints on how taet@hb concrete
capturing situation.

We assume that the user-space capturing process can reaviam
the socket-buffer much faster than it arrives as soon asnbeeps has the
CPU and gets executed. From the observed CPU consumptidwe éfetrl-
script used for data capturing, this is a realistic assurnpti

Table C.3 gives the maximum export speed for the most bursti#lisiwv
data stream from the SWITCH routessv{IX1), versus observation window
length. Window shift is a uniform 10ms. The measurement®uagten over
two weeks of December 2005 (5th - 19th). Figure C.3 gives themum

146 C Data Capturing System

buffer sizes required versus the maximum capturing prossgion times
(i.e. maximum scheduling delay). The long-term average datie for the
observation interval was 150kiB/s for the observed router.

Window 10 ms 100 ms 1s 10s 100 s
Data 320kiB | 1.1 MiB | 2.0MiB | 15 MiB 61 MiB
Speed 32 MiB/s | 11 MiB/s | 2 MiB/s | 1.5 MiB/s | 0.61 MiB/s

Table C.3: Maximum export burst of swilX1 (5.12.2005-18.12.2005)

Note that these observations cannot directly be used te Huabiven fig-
ures for another capturing situation, since the maximunsttapeed is only
weakly dependent on the average data rate, but stronglyndepeon the net-
work and the router buffer memory and export algorithm. As@asequence,
these figures may change completely if a different routee tigpused. Our
observations can give a general idea about “reasonable’efgbut are no
substitute for individual and careful evaluation of eachtuang situation.

100MB T T .

10MB

1MB

Required buffer size

100kB . . .
10ms 0.1s 1s 10s 100s

Maximum CPU scheduling delay

Figure C.3: Minimal needed socket buffer size vs. maximum CPU schedulin
delay (150kiB/s average data volume)

C.4 Fault Tolerance 147

C.3.5 Performance Improvement

The most important bottleneck is the CPU scheduler latetogyether with
the socket buffer capacity. It is possible to use a real-tagable scheduler
or a real-time kernel extension to reduce the maximum tiraé tthe socket
buffers must hold data before it is processed. The main $dkéer func-
tionality for de-bursting moves then to a buffer in the caipty software or to
the filesystem buffer-cache. The primary advantage is tlebuffer can be
made larger than the current kernel-limit of 16MiB. The mdisadvantage
of a real-time extension is that the implementation of thetwang software
becomes more complicated and error-prone. We believe Hiag & lightly
loaded system and generously sized socket buffers is therabe solution,
except when the available maximum socket-buffer size istoall to ensure
reliable NetFlow packet capturing.

C.4 Fault Tolerance

Because the DDoSVax NetFlow capturing system runs arowndadick with-
out human supervision, the system needs to recover frompnaisiems with-
out manual intervention. At the same time, problems shoeleported to the
system administrator with reasonable delay. All companeant kept simple
in order to make design and implementation errors lessylikel

The error recovery mechanisms on the data-capturing be8},(uses a
2-layer supervision mechanism. The individual componenfthe mecha-
nism and their relation are shown in Figure C.4. The capusoftware itself
takes NetFlow packets and writes them into files. It doesingtilse in or-
der to be as simple as possible. The first fault tolerance legesists of a
supervisor process, implemented as a Python script withgdesloop that is
run once every minute. At the beginning of each loop a tinmpte written
to disk. The supervisor checks periodically that the cagtprocesses are
still running and that a minimum of free disk-space is leftalcapturer is
not running, it is restarted and an email notification is sHrtee disk space
gets low, an email is sent to the administrator, but no ntitgeis done, since
nothing can be done without manual intervention.

The supervisor is in turn monitored byceon -job, i.e. cron provides
basic reliable and periodic execution service. Thwa service was chosen
because even if theon -job hangs or crashes, it will be run again at the next
preselected time. Theon -job checks periodically that the supervisor still

148 C Data Capturing System

Cron-Job

(linear, no loops)

Is supervisor process present?
Does main loop in supervisor run?
Failed: Kill and restart supervisor

Supervisor
(demon-style)

Is capturer process present?
Failed: Kill and restart capturer

Is there enough disk—space left?
Failed: Alert administrator

NetFlow Capturer NetFlow Packets

------------------------------- daemon S |e - - — — — — —
packet stream (e) in hourly files

Figure C.4: Fault tolerance mechanism on flow capturer

runs in exactly one instance. It also checks whether the roain of the
supervisor is still running by looking at the loop timestaorpdisk. If either
test fails, the supervisor is restarted and an email ndtificas sent. The
cron -job itself is a Phyton script that has a very simple lineandure, i.e.
does not contain any loops. It performs very few and only &noperations
in order to provide maximum reliability. After the tests &iréshed, the script
exits and is started again lgyon at the beginning of the next 10 minute
interval.

A third monitoring mechanism is implemented on the host thais the
data into the ETH networkay3). The transfer to ETH, compression and
transfer to tape storage is done hourly witbran -executed script. All data
files, that were not modified for more than 66 minutes, aresfeared to ETH
and deleted oezmp2. The script tests whether there are enough hour-files,
whether they have reasonable size and whether they achasiya minimum
number of flow-records in them. Transferred files are chedkedaorrect

C.5 Privacy Concerns and Collaboration Possibilities 149

sizes. The script also checks whether the system clock ocefbteiring host
is running correctly, since inaccuracies could lead todfanand deletion of
not yet closed hourly files. In case of deviations from preliegts, an email

is sent.

Since the whole software installation aw3 consists of a single script
called from acron -job and because the host requirements are limited to a
standard PC with enough storage spawed could be replaced with mini-
mal effort in case of hardware problems. In addition, a reldun installation
where a secondary transfer host pulls files from the primapyuring system
on ezmp?2 if they have been there for a longer time (several hours)sy &a
establish. Replicating the software installationaw3 and changing one pa-
rameter in the transfer script is enough. The primary tenrsfstem removes
all data files fromezmp2 within less than three hours (taking into account
some time for the actual transfer). The redundant trangiem could then
be set to pull only files modified at three hours old freemp2 and would
activate wheraws3 fails.

For the data transfer from SWITCH tw3 and, after compression, on-
wards to tape storage (on tfebba system), there are two safety mecha-
nisms. Every file is checked whether it has the correct file after transfer.
Files too small can be observed when transfers are intexupiles too large
can be observed with filesystem problems on the tape libdarghis case,
the file size is rounded up to the next full block size, but theif empty. As
second test, all files are tested whether they are corrdctigtared.

There is space for about half a day of data storage on the dptaring
host (in casew3 becomes unreachable or unavailable). In addéiehstores
the last 4-6 weeks of data locally, so that outages ofabie tape system
will not result in data loss. So far we have observed one unamred outage
of the ETH network that prohibited transfer from the SWITCHwark to
aw3 and lasted 6 hours. We have experienced unannouaikeal outages
of up to a day and announced outages of several days duringdgsyof the
tape library hardware. Neither of these problems causediatayloss.

C.5 Privacy Concerns and Collaboration
Possibilities

Swiss privacy laws do not allow collection and storage ofuoek payload
data and exceptions are only made when it is absolutely sagefor net-

150 C Data Capturing System

work maintenance and operation. Even then the data has telbeed as
soon as it is not needed anymore or after a very short time.cagtured
data is to be treated as confidential and misuse or publicatia be subject
to criminal penalties. Identifying individual users andpection of the pay-
loads of their data requires either a court order or peraissf the sender
or receiver of the data. To a limited degree this can be doreenployment
contracts, but employers cannot suspend privacy complétat way. The
exact legal situation with regard to data payloads is stiflix. A summary
regarding the present situation in the workplace can bedaufiL03].

Since we are only capturing flow level data and not payloduségal
restrictions are lighter. The data still needs to be kepfidential, since
there might be possibilities to identify individual behawi. We also have
a contractual agreement with SWITCH, that does prevent us identifying
behaviour of individuals and publishing any data that cdaddsensitive with
regard to privacy, such as unanonymised IP addresses. ihere valid
possibility to work with data attributed to a user: Indivasi can identify and
inspect the data they sent or received over the network.

The NetFlow data archive and processing infrastructuresedun the
DDoSVax project to support research activities, such asttiesis. Access
is restricted to individuals that have a need to access ttee dResearchers
are already bound to secrecy by their contract. Studentgydbiesis work
for semester- and master-theses have to sign a confidgnéigfeement, and
are reminded that they could be personally subject to cahprosecution if
they misuse the data. They are also disallowed from keepipgtthe data
or possibly privacy relevant results in their possessioerdheir thesis work
is finished. thesis data is instead archived by the DDoSVajept.

Publications and student theses have to be inspected bytb8ax core
staff before they can be published. If there is even a remagsipility of a
privacy violation, SWITCH has to be consulted as well and loasl¢ar the
publication.

In order to allow new research projects on the DDoSVax NetFata
archive and to create the possibility of scientific collaimn based on the
data, the contract between the CSG (Communication Systemsp(zthe
DDoSVax project is a research activity of the CSG) at ETH akd 8CH
provides the possibility of submitting research proposala review board
that is jointly formed by the CSG and SWITCH. This review bobed the
primary obligation to ensure that privacy laws and confidgity of the Net-
Flow data is kept. Research proposals must describe houstarsured and

C.6 Lessons Learned 151

the review board may impose additional restrictions oratgpeoject propos-
als. A specific concern is data access given to researcheedfiiated with
ETH or not subject to swiss privacy laws. In case of such bolations,
strong contractual agreements might be required and reglibg the review
board. An other option would be to limit the access of themekresearchers
to anonymised data and results. This option would stilvaheeaningful col-
laboration where, e.g., algorithms could be developedljoand then tested
and evaluated by DDoSVax or CSG staff members.

C.6 Lessons Learned

We now discuss our experiences made with the capturingrayestel its de-
sign while operating it for several years.

e The increased socket buffer size of 2 MiB was large enoughtfer
SWITCH data and we observed no significant loss of data initrans
capturing after the socket buffers were enlarged.

e Capturing the data into hour-files did not cause any sigmifipgob-
lems in processing or storage. However, it turned out trebtiginal
file-boundary selection method, that just counted 3600rsicbefore
starting a new file, had a small but noticeable skew comparedai-
time. While not a problem when operating the capturing sysiam
a month or so, the accumulated skew became a concern aftgrion
operation periods, since it made finding specific data mdifeculi.
The original capturing script was therefore successfybigraded with
a time-synchronisation mechanism that can vary the lenfythaap-
tured file by up to two minutes in order to bring its boundadieser to
the hour boundaries on the system clock. The two-minute kftows
resynchronisation after a restart within 15 hours. whilegdieg the files
still approximately one hour long. The latter is convenjdrgcause
we frequently experienced situations where the systemwkaaezmp?
was off by an arbitrary amount of time after reboot, but waseaied
within a few hours. This was due to such factors, as for exaraplun-
reachable NTP host and other issues outside of our contrith fést
synchronisation, this situation could lead to files thattabnbetween
a few seconds and up to nearly two hours of data. These filefdwou
trigger the alerting mechanisms that monitor file counts,dizes and

152

C Data Capturing System

flow counts, which in turn would cause a need for manual inspec
With the used slow convergence method the characteridtite alata
files stay in the normal parameter range, even when resyhziagew
clock setting. Directly using the system clock as the timeshaas also
considered, but rejected because it would again causegongblvhen
the clock on the capturing host was set to a wrong value. The sy
chronisation mechanism has run accurately and withoutl@nubfor
several years by now.

Whenever error messages are sent automatically via emasl,irit-

portant to have a rate-limiting mechanism. Without rateting un-

intended DoS attacks on the capturing system administratogil ac-
count are a real possibility.

In order to verify that a data file has been transferred frotoa re-
mote system correctly, we found it sufficient to compare tleesizes.
Errors we found included files both too small and too large essalt
of transfer and file-system problems. A data comparisongusiireck-
sums would find bit-errors, but would cause significant adddl 1/0
load on the involved hosts. The primary concern is bit-ariarthe
compressed data, since each leads to a loss of one datadblabkut
100kB (raw size). Given the low number of observed bit-exinicom-
pressed data (about 5 in the stored data for 2004), use disin@s for
transfer would not have improved stored data quality sigaifily.

Bit errors in the raw data can happen in the capturing chaitoupe
point when the data is compressed. Note that these errors waly
impact a single flow record in most cases and at maximum a com-
plete flow packet. We do not know the number of bit errors inrtive
data, but can estimate an upper bound for the possible rdpgaced
errors. Finding non-randomly placed errors introducedHhsy router
would likely need some kind of plausibility test, which ighrar infea-
sible in our set-up. Since the 16 bit NetFlow version fieldheaked
by our NetFlow processing library on each packet read, wavkihat
very few of these fields are corrupted. In the whole 2004 d&taaw
less than 10 packets with incorrect version fields that wetengial
bit-errors. Scaling this linearly up (by assuming the eposition is
random in the packet) gives less than 7700 packets in theewdfol
2004 with bit errors introduced in the raw data, as the typieaFlow
packet in the SWITCH network is around 1440 bytes long. Weeleli

C.6 Lessons Learned 153

that these numbers do not justify adding checksums to timsfeaof
the raw data. In addition, such checksums would not helpagarrors
introduced in the routers, during network transfer and endapturing
host before the data is written to disk.

Curriculum Vitae

Arno Wagner, Dipl. Inform.
arno@wagner.name

Born January 7th, 1969
Citizen of Austria

Education
2000 - 2008 ETH drich, PhD Studies in Network Security
2003 ISC CISSP certificate

1990 -1996 University of Karlsruhe, Germany,
Diploma (M.S.) in Computer Science

1989 Abitur (German general university entrance qualificgt
Staudinger-Gesamtschule Freiburg, Germany

Work Experience

2006 - today Lecturer, ETHich

2000 - 2006 ETH arich, research and teaching assistant

1997 - 2000 Researcher at the Institute for Telematicsy, T&ermany
1996 - 1997 University of Karlsruhe, Teaching assistant

Honours

2006 Best paper award at ICISP 2006 ‘felow-Based
Identification of P2P Heavy-Hitters”

2005 Best paper award at WETICE 2005 fantropy Based
Worm and Anomaly Detection in Fast IP Networks”

2004 Best paper award at WETICE 2004 fAn Economic
Damage Model for Large-Scale Internet Attacks”

1997 Award of the sponsor’s association of the FZIfor exceptional
performance in the Diploma Exam in Computer Science

Document License

Unmodified distribution of this work for free is allowed. Fderived work
and other uses, please consult the license below or cohtaatithor.
Author address:

Email: arno@wagner.name or arno.wagner@acm.org
WWW: http://www.tansi.org

Creative Commons - Attribution-NonCommercial-ShareAlike 3.0
License URL:
http://creativecommons.org/licenses/by-nc-sa/3.0/le galcode

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THISRE-
ATIVE COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”"). THE WOK IS PRO-
TECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF HE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHLAW
IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCHP
AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTEN
THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSORRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCHRNCE
OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. “Adaptation” means a work based upon the Work, or upon the Work and other

pre-existing works, such as a translation, adaptationvatere work, arrangement

of music or other alterations of a literary or artistic workptonogram or perfor-
mance and includes cinematographic adaptations or any atharifi which the
Work may be recast, transformed, or adapted including in amy fecognizably
derived from the original, except that a work that constisua Collection will not

be considered an Adaptation for the purpose of this Licefree.the avoidance

of doubt, where the Work is a musical work, performance or phaao, the syn-
chronization of the Work in timed-relation with a moving imagstiching”) will

be considered an Adaptation for the purpose of this License.

156

Document License

. “Collection” means a collection of literary or artistic works, such as elape-

dias and anthologies, or performances, phonograms or brstadoaother works
or subject matter other than works listed in Section 1(g)welehich, by reason
of the selection and arrangement of their contents, cotestittellectual creations,
in which the Work is included in its entirety in unmodified foatong with one
or more other contributions, each constituting separataratependent works in
themselves, which together are assembled into a collectiv#ewhA work that
constitutes a Collection will not be considered an Adaptafas defined above)
for the purposes of this License.

. “Distribute” means to make available to the public the original and copi#iseof

Work or Adaptation, as appropriate, through sale or otlarsfier of ownership.

. “Licensor” means the individual, individuals, entity or entities thieq(s) the

Work under the terms of this License.

. “Original Author” means, in the case of a literary or artistic work, the individ-

ual, individuals, entity or entities who created the Workifono individual or

entity can be identified, the publisher; and in additionitie case of a perfor-
mance the actors, singers, musicians, dancers, and othenpewho act, sing,
deliver, declaim, play in, interpret or otherwise perforterary or artistic works
or expressions of folklore; (ii) in the case of a phonogramphoducer being the
person or legal entity who first fixes the sounds of a perforrmamother sounds;
and, (iii) in the case of broadcasts, the organization tiaatsmits the broadcast.

. “Work” means the literary and/or artistic work offered under thengeof this

License including without limitation any production in thtetary, scientific and
artistic domain, whatever may be the mode or form of its expoessicluding
digital form, such as a book, pamphlet and other writing; auie;taddress, ser-
mon or other work of the same nature; a dramatic or dramatico-alusark; a
choreographic work or entertainment in dumb show; a musical ositipn with
or without words; a cinematographic work to which are assimilavorks ex-
pressed by a process analogous to cinematography; a workwindgy, painting,
architecture, sculpture, engraving or lithography; a pgmphic work to which
are assimilated works expressed by a process analogous ttmgpdyahy; a work
of applied art; an illustration, map, plan, sketch or threaehsional work relative
to geography, topography, architecture or science; a peeoce; a broadcast; a
phonogram; a compilation of data to the extent it is protected eopyrightable
work; or a work performed by a variety or circus performer toékeent it is not
otherwise considered a literary or artistic work.

. “You” means an individual or entity exercising rights under thisehise who has

not previously violated the terms of this License with respethe Work, or who
has received express permission from the Licensor to exerigjbts under this
License despite a previous violation.

i. “Publicly Perform” means to perform public recitations of the Work and to com-

municate to the public those public recitations, by any meapsazess, including
by wire or wireless means or public digital performances; toeralkailable to the
public Works in such a way that members of the public may acces® ttWorks
from a place and at a place individually chosen by them; tooperthe Work to
the public by any means or process and the communication to thiee fi the
performances of the Work, including by public digital perfance; to broadcast
and rebroadcast the Work by any means including signs, saridmges.

Document License 157

j- “Reproduce” means to make copies of the Work by any means including without
limitation by sound or visual recordings and the right of fimatand reproducing
fixations of the Work, including storage of a protected perfance or phonogram
in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or rest@any
uses free from copyright or rights arising from limitationmsesceptions that are provided
for in connection with the copyright protection under cagigt law or other applicable
laws.

3. License Grant. Subject to the terms and conditions of this License, Licemsveby
grants You a worldwide, royalty-free, non-exclusive, magal (for the duration of the
applicable copyright) license to exercise the rights inWwek as stated below:

a. to Reproduce the Work, to incorporate the Work into one aerfimllections, and
to Reproduce the Work as incorporated in the Collections;

b. to create and Reproduce Adaptations provided that atyAdaptation, including
any translation in any medium, takes reasonable steps tdyclebel, demarcate
or otherwise identify that changes were made to the originaddM~or example,
a translation could be marked “The original work was traesidtom English to
Spanish,” or a modification could indicate “The original wbiks been modified.”;

c. to Distribute and Publicly Perform the Work including asarporated in Collec-
tions; and,

d. to Distribute and Publicly Perform Adaptations.

The above rights may be exercised in all media and formats whatie known or
hereafter devised. The above rights include the right to nsaké modifications as are
technically necessary to exercise the rights in other medld@mats. Subject to Section
8(f), all rights not expressly granted by Licensor are hgnmeserved, including but not
limited to the rights described in Section 4(e).

4. Restrictions. The license granted in Section 3 above is expressly madecsubjand
limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only undee terms of this
License. You must include a copy of, or the Uniform Resour@niifier (URI)
for, this License with every copy of the Work You DistributeRublicly Perform.
You may not offer or impose any terms on the Work that restrictehms of this
License or the ability of the recipient of the Work to exeecike rights granted to
that recipient under the terms of the License. You may not ceibie the Work.
You must keep intact all notices that refer to this Licensetarttie disclaimer of
warranties with every copy of the Work You Distribute or Ralyl Perform. When
You Distribute or Publicly Perform the Work, You may not impasey effective
technological measures on the Work that restrict the alifity recipient of the
Work from You to exercise the rights granted to that recipiemer the terms of
the License. This Section 4(a) applies to the Work as inaatted in a Collection,
but this does not require the Collection apart from the Wasklf to be made
subject to the terms of this License. If You create a Collectigoon notice from
any Licensor You must, to the extent practicable, remove fileerCollection any
credit as required by Section 4(d), as requested. If YouemaAdaptation, upon
notice from any Licensor You must, to the extent practicatdejove from the
Adaptation any credit as required by Section 4(d), as reqdes

158

Document License

b. You may Distribute or Publicly Perform an Adaptation onhder: (i) the terms

of this License; (i) a later version of this License with teme License Elements
as this License; (iii) a Creative Commons jurisdiction licefsither this or a later
license version) that contains the same License Elementssakitiense (e.g.,
Attribution-NonCommercial-ShareAlike 3.0 US) (“Applic&bLicense”). You
must include a copy of, or the URI, for Applicable License wetery copy of
each Adaptation You Distribute or Publicly Perform. You may after or impose
any terms on the Adaptation that restrict the terms of the &pple License or
the ability of the recipient of the Adaptation to exercise tights granted to that
recipient under the terms of the Applicable License. You maspkintact all no-
tices that refer to the Applicable License and to the disotaiof warranties with
every copy of the Work as included in the Adaptation You [Oistie or Publicly
Perform. When You Distribute or Publicly Perform the AdaptatiYou may not
impose any effective technological measures on the Adaptdtiat restrict the
ability of a recipient of the Adaptation from You to exercibe rights granted to
that recipient under the terms of the Applicable LicensesBaction 4(b) applies
to the Adaptation as incorporated in a Collection, but traesinot require the
Collection apart from the Adaptation itself to be made sutfiethe terms of the
Applicable License.

. You may not exercise any of the rights granted to You in $acdiabove in any

manner that is primarily intended for or directed toward commaéezivantage or
private monetary compensation. The exchange of the Work Faraopyrighted
works by means of digital file-sharing or otherwise shall retbnsidered to be
intended for or directed toward commercial advantage or f@iw@onetary com-
pensation, provided there is no payment of any monetary corapjensn con-

nection with the exchange of copyrighted works.

. If You Distribute, or Publicly Perform the Work or any Adafions or Collections,

You must, unless a request has been made pursuant to Seclipkeéfaintact all
copyright notices for the Work and provide, reasonable éorttredium or means
You are utilizing: (i) the name of the Original Author (or pslemym, if applica-
ble) if supplied, and/or if the Original Author and/or Licgar designate another
party or parties (e.g., a sponsor institute, publishingerournal) for attribution
(“Attribution Parties”) in Licensor’s copyright noticestims of service or by other
reasonable means, the name of such party or parties; (ii)tteetithe Work if
supplied; (iii) to the extent reasonably practicable, thel Uf any, that Licensor
specifies to be associated with the Work, unless such URI doeeefer to the
copyright notice or licensing information for the Work; arfi) consistent with
Section 3(b), in the case of an Adaptation, a credit ideimifghe use of the Work
in the Adaptation (e.g., “French translation of the Work byighal Author,” or
“Screenplay based on original Work by Original Author”). élbredit required
by this Section 4(d) may be implemented in any reasonable mapnarided,
however, that in the case of a Adaptation or Collection, atr@mim such credit
will appear, if a credit for all contributing authors of thed@ptation or Collec-
tion appears, then as part of these credits and in a manneasatds prominent
as the credits for the other contributing authors. For tl@dance of doubt, You
may only use the credit required by this Section for the puemfsattribution in
the manner set out above and, by exercising Your rights umiet tcense, You
may not implicitly or explicitly assert or imply any connectiaith, sponsorship
or endorsement by the Original Author, Licensor and/or Atttion Parties, as
appropriate, of You or Your use of the Work, without the separexpress prior
written permission of the Original Author, Licensor and/dtribution Parties.

Document License 159

e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemesln those jurisdictions in
which the right to collect royalties through any statutorycompulsory li-
censing scheme cannot be waived, the Licensor reserveschesigr right
to collect such royalties for any exercise by You of the rigistanted under
this License;

ii. Waivable Compulsory License Schemes. In those jurisglictiin which
the right to collect royalties through any statutory or cofepry licensing
scheme can be waived, the Licensor reserves the exclushvetoigollect
such royalties for any exercise by You of the rights grantedeu this Li-
cense if Your exercise of such rights is for a purpose or usehwis oth-
erwise than noncommercial as permitted under Section 4(c) tedvase
waives the right to collect royalties through any statutmrgompulsory li-
censing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves tite to collect royal-
ties, whether individually or, in the event that the Licenisca member of a
collecting society that administers voluntary licensingesoes, via that so-
ciety, from any exercise by You of the rights granted under lticense that
is for a purpose or use which is otherwise than noncommercagasitted
under Section 4(c).

f. Except as otherwise agreed in writing by the Licensor omay be otherwise
permitted by applicable law, if You Reproduce, DistributdPablicly Perform the
Work either by itself or as part of any Adaptations or Coliees, You must not
distort, mutilate, modify or take other derogatory actionetation to the Work
which would be prejudicial to the Original Author’s honorreputation. Licensor
agrees that in those jurisdictions (e.g. Japan), in whighexercise of the right
granted in Section 3(b) of this License (the right to make Aadgpns) would
be deemed to be a distortion, mutilation, modification or ottezpgatory action
prejudicial to the Original Author’s honor and reputatitime Licensor will waive
or not assert, as appropriate, this Section, to the fulbesné permitted by the
applicable national law, to enable You to reasonably egerdour right under
Section 3(b) of this License (right to make Adaptations) ttatherwise.

5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRIT-
ING AND TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, Lt
CENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIE,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRAN-
TIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PRPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR
NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLU
SION OF IMPLIED WARRANTIES, SO THIS EXCLUSION MAY NOT APPLY D
YOU.

6. Limitation on Liability.
EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT
WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLAR DAM-
AGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF
LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES

160 Document License

7. Termination

a. This License and the rights granted hereunder will terteinatomatically upon
any breach by You of the terms of this License. Individualsrtities who have
received Adaptations or Collections from You under thiselnse, however, will
not have their licenses terminated provided such indivisloakentities remain in
full compliance with those licenses. Sections 1, 2, 5, 6, @,&will survive any
termination of this License.

b. Subject to the above terms and conditions, the licenseagt@ere is perpetual (for
the duration of the applicable copyright in the Work). Ndtstanding the above,
Licensor reserves the right to release the Work under éfffieicense terms or to
stop distributing the Work at any time; provided, howevet tray such election
will not serve to withdraw this License (or any other licenbat has been, or
is required to be, granted under the terms of this License) tlais License will
continue in full force and effect unless terminated as statexve.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or dl€iion, the Licen-
sor offers to the recipient a license to the Work on the sanmest@nd conditions
as the license granted to You under this License.

b. Each time You Distribute or Publicly Perform an Adaptatibitensor offers to
the recipient a license to the original Work on the same terndscanditions as
the license granted to You under this License.

c. Ifany provision of this License is invalid or unenforc&abnder applicable law, it
shall not affect the validity or enforceability of the rema@én of the terms of this
License, and without further action by the parties to thigagent, such provision
shall be reformed to the minimum extent necessary to make suelsiomvalid
and enforceable.

d. No term or provision of this License shall be deemed waivedireo breach con-
sented to unless such waiver or consent shall be in writidgsagned by the party
to be charged with such waiver or consent.

e. This License constitutes the entire agreement betweqpatiies with respect to
the Work licensed here. There are no understandings, agnéemrerepresenta-
tions with respect to the Work not specified here. Licensaitlsiot be bound
by any additional provisions that may appear in any commumicgtom You.
This License may not be modified without the mutual written agre® of the
Licensor and You.

f. The rights granted under, and the subject matter refecgricehis License were
drafted utilizing the terminology of the Berne Conventiom foe Protection of
Literary and Artistic Works (as amended on September 28, 187®Rome Con-
vention of 1961, the WIPO Copyright Treaty of 1996, the WIPOfétenances
and Phonograms Treaty of 1996 and the Universal Copyrighv&tion (as re-
vised on July 24, 1971). These rights and subject matter fédet & the relevant
jurisdiction in which the License terms are sought to be exd#draccording to the
corresponding provisions of the implementation of thosetyrpeovisions in the
applicable national law. If the standard suite of rightsnged under applicable
copyright law includes additional rights not granted urities License, such addi-
tional rights are deemed to be included in the License; thisiise is not intended
to restrict the license of any rights under applicable law.

Bibliography 161

Bibliography

[1] http://www.ripe.net.

[2] CAIDA Analysis of Code-Redhttp://www.caida.org/research/
security/code-red/ . Last visited May 2008.

[3] Capacitor plague. http://en.wikipedia.org/wiki/Capacitor_
plague . Last visited May, 2008.

[4] SANS Top-20 2007 Security Risksttp://www.sans.org/top20/

Last visited May 2008.

[5] Sasser worm author arrested in Germany. ZDNet.co.uk. y Ma
2004, avaliable fromhttp://news.zdnet.co.uk/security/0,
1000000189,39154196,00.htm . Last visited May 2008.

[6] The Swiss Education & Research Netwohktp://www.switch.ch

[7] Wikipedia: LZO. http://en.wikipedia.org/wiki/LZO . Last vis-
ited May 2008.

[8] Wikipedia: Move-to-front transform.http://en.wikipedia.org/
wiki/Move-to-front_transform . Last visited May 2008.

[9] Cisco White Paper: NetFlow Services and Applications.
http://ww.cisco.com/warp/public/cc/pd/ioswiioft/
neflct/tech/napps_wp.htm , 2002. Not avaliable anymore as
of June, 2006.

[10] Blaster Worm Update. http:/fisc.sans.org/diary.php?
storyid=26 , August 2003. Last visited May, 2008.

[11] McAfee: W32/Nachi.worm. http://vil.nai.com/vil/content/
v_100559.htm , August 2003. Last visited January, 2008.

[12] Symantec Security Response - W32.Blaster.Worm. http:
IIsecurityresponse.symantec.com/avcenter/venc/data/
w32.blaster.worm.html , 2003. Last visited May, 2008.

[13] W32.Welchia.Worm. http://securityresponse.symantec.com/
avcenter/venc/data/w32.welchia.worm.html , August 2003.
Last visited May, 2008.

[14] Jay R. Ashworth. The Risks Digest - The Great Capacitcer&
of 2003. http://catless.ncl.ac.uk/Risks/22.73.html , May
2003.

[15] Paul Barford and David Plonka. Characteristics of NetwTraffic
Flow Anomalies. InProcceedings of the ACM SIGCOMM Internet
Measurement Workshpp001.

[16] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. LAcally
Adaptive Data Compression Schem€ommunications of the ACM

162 Bibliography

29(4), 1986.
[17] CERT Security Advisory CA-2003-20 MS.Blasterhttp://www.
cert.org/advisories/CA-2003-20.html , 2004.

[18] Daniela Brauckhoff, Martin May, and Bernhard Platthn€omparison
of Anomaly Signal Quality in Common Detection Metrics. Pmoc-
ceedings of ACM SIGMETRICS 2007, MineNet Workshope 2007.

[19] Daniela Brauckhoff, Martin May, and Bernhard PlattnEtow-Level
Anomaly Detection - Blessing or Cursé2EE INFOCOM 2007 Stu-
dent Workshop, 2007.

[20] Daniela Brauckhoff, Bernhard Tellenbach, Arno Wagn&nukool
Lakhina, and Martin May. Impact of Packet Sampling on Angmal
Detection Metrics. IfProcceedings of the ACM Internet Measurement
Conference 20Q6Rio de Janeiro, Brazil, October 2006.

[21] L. Briesemeister, P. Lincoln, and P. Porras. Epidenafifes and De-
fense of Scale-Free Networks. Rtoceedings of the ACM CCS Work-
shop on Rapid Malcode (WORM’'Q3)ctober 2003.

[22] M. Burrows and D. J. Wheeler. A Block-Sorting Losslesgdd@om-
pression Algorithm. Technical Report 124, Digital Equiprth€orpo-
ration, Palo Alto, California, 1994.

[23] The Burrows-Wheeler transform. http://en.wikipedia.org/
wiki/Burrows-Wheeler_transform . Last visited May 2008.

[24] The bzip2 and libbzip2 official home page.http://sources.
redhat.com/bzip2/ . Last visited May 2008.

[25] Wikipedia: Bzip2. http://en.wikipedia.org/wiki/Bzip2 . Last
visited May 2008.

[26] CAIDA: Cooperative Association for Internet Data Aysis. http:
[www.caida.org/

[27] Senthilkumar G. Cheetancheri, John Mark Agosta, DekiieDash,
Karl N. Levitt, Jeff Rowe, and Eve M. Schooler. A Distributeldst-
based Worm Detection System.RPnoceedings of the 2006 SIGCOMM
workshop on Large-scale attack defen2@06.

[28] Cisco IOS NetFlow - White Papershttp://www.cisco.com/en/
US/products/ps6601/prod_white_papers_list.htm| . Last vis-
ited May, 2008.

[29] Cisco NetFlow Services Solutions Guide.http://www.cisco.
com/en/US/products/sw/netmgtsw/ps1964/products_
implementation_design_guide09186a00800d6all.html . Last
visited May, 2008.

[30] B. Claise. Cisco Systems NetFlow Services Export \derd. RFC

Bibliography 163

3954, October 2004.

[31] Robert X. Cringely. Calm Before the Stormttp://www.phs.org/
cringely/pulpit/2001/pulpit_20010730_000422.html . Last
visited May, 2008.

[32] David Dagon, Cliff Zou, and Wenke Lee. Modeling Botnebpaga-
tion Using Time Zones. Iin Proceedings of the 13th Network and
Distributed System Security Symposium NOFebruary 2006.

[33] R. Danyliw and A. Householder. CERT Advisory CA-2002-Code
Red Worm Exploiting Buffer Overflow In IIS Indexing ServicelLD.
http://www.cert.org/advisories/CA-2001-19.html , 2001.

[34] R. Danyliw and A. Householder. CERT Advisory CA-2002-2on-
tinued Threat of the Code Red Worm http://www.cert.org/
advisories/CA-2001-23.html , 2001.

[35] DDoSVax. http:/www.tik.ee.ethz.ch/ ~ddosvax/ .

[36] Thomas Mmibendorfer.Impact Analysis, Early Detection and Mitiga-
tion of Large-Scale Internet Attack$”hD thesis, Department for In-
formation Tchnology and Electical Engineering, ETH Zuri2f05.

[37] Thomas mibendorfer, Arno Wagner, Theus Hossmann, and Bernhard
Plattner. Flow-level Traffic Analysis of the Blaster and EpWorm
Outbreaks in an Internet Backbone. Pnoceedings of DIMVA 2005,
LNCS 3548Springer’s Lecture Notes in Computer Science, 2005.

[38] Matthew Dunlop, Carrie Gates, Cynthia Wong, and Chenging.
SWorD - A Simple Worm Detection Scheme. @M Conferences
(2), pages 1752-1769, 2007.

[39] eEye Digital Security. Blaster Worm Analysi$itp://iwww.eeye.
com/html/Research/Advisories/AL20030811.htm| , 2003.

[40] Wikipedia: Entropy. http://fen.wikipedia.org/wiki/Entropy
Last visited May, 2008.

[41] FAI - Fully Automatic Installation. http://www.informatik.
uni-koeln.de/fai/ . Last visited May, 2008.

[42] S. Floyd and V. Paxson. Difficulties in Simulating thetdmet.
IEEE/ACM Transactions on Networking001.

[43] Stefan Frei, Martin May, Ulrich Fiedler, and Bernhandteher. Large-
scale Vulnerability Analysis. Ih.SAD '06: Proceedings of the 2006
SIGCOMM workshop on Large-scale attack defempsmes 131-138,
New York, NY, USA, 2006. ACM.

[44] Hungary Gabor Szappanos VirusBuster. Virus Bulletfirus infor-
mation and overview - W32/Welchiahttp://www.virusbtn.com/
resources/viruses/welchia.xml , April 2004. Last visited Jan-

164 Bibliography

uary, 2005.

[45] Carrie Gates, Michael Collins, Michael Duggan, Andriéampanek,
and Mark Thomas. More Netflow Tools for Performance and Secu-
rity. In Proceedings of the 18th Conference on Systems Admindstrati
(LISA 2004), Atlanta, USA, November 14-19, 200dges 121-132.

USENIX, 2004.
[46] Wikipedia: Gibbs’ inequality. http://en.wikipedia.org/wiki/
Gibbs’_inequality . Last visited May, 2008.

[47] J. Willard Gibbs.The Collected Works of J. Willard Gibb¥ale Uni-
versity Press, 1957.

[48] GNU GENERAL PUBLIC LICENSE, Version 2http://www.gnu.
org/copyleft/gpl.html , June 1991.

[49] G. Gu, Z. Chen, P. Porras, and W. Lee. Misleading and &g
Importance-Scanning Malware PropagationPoceedings of the 3rd
International Conference on Security and Privacy in Comitation
Networks (SecureComm 2007), Mice, Frari2@07.

[50] The gzip home pagéttp://www.gzip.org/

[51] Lukas Haemmerle. P2P Filesharing Population Trackiigaster's
thesis, ETH Zurich, 2004.

[52] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Woahd D. Wol-
ber. A Network Security Monitor. IfProceedings of the IEEE Sympo-
sium on Security and Privag$990.

[53] Prof. Dr. K. HindererStochastikiir Infomatiker und IngenieureProf.
Dr. K. Hinderer, 1989. Skript zu Vorlesung an der UniversKarl-
sruhe.

[54] Wikipediea: Huffman Coding.http://en.wikipedia.org/wiki/
Huffman_coding . Last visited May, 2008.

[55] David A. Huffman. A Method for the Construction of Minim-
Redundancy Codesroceedings of the Institute of Radio Engineers
40(9):1098-1101, 1952.

[56] http:/iwww.ipv6.org/

[57] S. M. Kay. Fundamentals of Statistical Signal Processing: Estinmatio
Theory Prentice-Hall PTR, Englewood Cliffs, NJ, 1993.

[58] Anukool Lakhina, Mark Crovella, and Christophe Diot. irhg
Anomalies Using Traffic Feature Distributions.Pmoccedings of ACM
SIGCOMM, Philadelphia, PA, August 200X05.

[59] Frank Lambert. A Student’s Approach to the Second Law Bn-
tropy. http://lwww.entropysite.com/students_approach.html ,
August 2005. Last visited May, 2008.

Bibliography 165

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Wanke Lee and Dong Xiang. Information-Theoretic Meaasufor
Anomaly Detection. IEEE Sumposium on Security and Priova@ak-
land, CA, May 2001.

Robert Lemos. MSBlast epidemic far larger than believe
http://news.com.com/MSBlast+epidemic+far+larger+tha n+
believed/2100-7349_3-5184439.html , 2004. Last visited May
2008.

Abraham Lempel and Jacob Ziv. A Universal Algorithm 8gquential
Data CompressionlEEE Transactions on Information Theorylay
1977.

Ming Li and Paul Vitanyi.An Introduction to Kolmogorov Complexity
and Its Applications Springer Verlag, second edition edition, 1997.
Richard Lippmann, David Fried, Isaac Graf, Joshua HEsgjrKristo-
pher Kendall, David McClung, Dan Weber, Seth Webster, Dan
Wyschogrod, Robert Cunningham, and Marc Zissman. Evalgdii-
trusion Detection Systems: The 1998 DARPA Off-line IntarsDe-
tection Evaluation. InProceedings of the DARPA Information Sur-
vivability Conference and Expositiphos Alamitos, CA, 2000. IEEE
Computer Society Press.

Wikipedia: LZ77 and LZ78. http://en.wikipedia.org/wiki/

LZ77. Last visited May, 2008.
http://www.oberhumer.com/opensource/lzo/ . LZO compres-
sion library. Last visited May, 2008.

Mohammad Mannan and Paul C. van Oorschot. On Instansadgisg
Worms, Analysis and Countermeasures WORM ’'05: Proceedings
of the 2005 ACM workshop on Rapid malcppages 2-11, New York,
NY, USA, 2005. ACM.

M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom nengenera-
tor. In ACM Trans. on Modeling and Computer Simulatigalume 8,
pages 3-30, 1998.

Makoto Matsumoto. Mersenne Twister Home Padptp://www.
math.sci.hiroshima-u.ac.jp/ ~m-mat/MT/emthtml . Last vis-
ited May, 2008.

John McHugh. The 1998 Lincoln Laboratory IDS Evaluatioln
RAID '00: Proceedings of the Third International Workshap Re-
cent Advances in Intrusion Detectiopages 145-161, London, UK,
2000. Springer-Verlag.

J. Mirkovic, J. Martin, and P. Reiher. A Taxonomy of DDé&®acks

166 Bibliography

and DDoS Defense Mechanisntgtp://www.lasr.cs.ucla.edu/
ddos/ucla_tech_report_020018.pdf , 2002. Last visited May,
2008.

[72] (Modified) BSD license. http://en.wikipedia.org/wiki/BSD _
License , 1988. Last visited May, 2008.

[73] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Stanifandl
N. Weaver. Inside the Slammer WornlEEE Security and Privagy
4(1):33-39, July 2003.

[74] D. Moore, C. Shannon, and J. Brown. Code-Red: a case sind
the spread and victims of an Internet worm. Rroceedings of the
ACM/USENIX Internet Measurement Workshdparseille, France,

November 2002.
[75] O. Milller, D. Graf, A. Oppermann, and H. Weibel. Swiss Internet
Analysis. http://www.swiss-internet-analysis.org/ , 2004.

[76] Estimation of entropy and information of undersampj@dbability
distributions. Workshop followinf NIPS’'03. http://www.menem.
com/~ ilya/pages/NIPS03/ , 2003. Last visited May, 2008.

[77] The openMosix Project. http Ilopenmosix.sourceforge.net/

Last visited March, 2008, project officially shut down as oagh 1
2008.

[78] http://www.openssh.com/

[79] R. Pastor-Satorras and A. Vespignani. Epidemic Spnggith Scale-
Free Networks, 2001.

[80] Ryan Permeh, Marc Maiffret, and Ryan Permeh. eEye Bliiecurity
Advisory .ida Code Red Wornfttp://research.eeye.com/html/
advisories/published/AL20010717.html , July 2001. Last visited
May, 2008.

[81] Georgios Portokalidis and Herbert Bos. SweetBait:oddpur Worm
Detection and Containment Using Low- and High-Interactitomey-
pots. Elsevier Computer Networks, Special Issue ‘From Intrudien
tection to Self-Protection’51(5):1239-1255, April 2007.

[82] J. Quittek, T. Zseby, B. Claise, and S. Zander. Requéms for IP
Flow Information Export (IPFIX). RFC 3917, October 2004.

[83] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, andéawdferzis.
My Botnet Is Bigger Than Yours (Maybe, Better Than Yours): Why
Size Estimates Remain Challenging.Rroceedings of HotBots 2007
April 2007.

[84] RFC 1951: DEFLATE 1.3 specification.

[85] RFC 1952: GZIP 4.3 Specification.

Bibliography 167

[86] RFC 3513: Internet Protocol Version 6 (IPv6) Addregsirchitec-
ture.

[87] Haakon Ringberg, Augustin Soule, Jennifer Rexford] @mristophe
Diot. Sensitivity of PCA for Traffic Anomaly Detection. IBIGMET-
RICS '07 Conference Proceedingmges 109-120, 2007.

[88] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Geiblll Mea-
surement Study of Peer-to-Peer File Sharing SystemsPrdceed-
ings of Multimedia Computing and Networking 2002 (MMCN ;02)
San Jose, CA, USA, January 2002.

[89] S. Schechter, J. Jung, and A. Berger. Fast Detectiogarfiing Worm
Infections. Inln Proceedings of the Seventh International Symposium
on Recent Advances in Intrusion Detection, French Rivi€rance,

September 2002004.
[90] C. Shannon and D. Moore. CAIDA: The Spread of the Wittyrilo
http://www.caida.org/research/security/witty/ , 2004.

[91] C. E. Shannon. A Mathematical Theory of Communicatidhe Bell
System Technical J. 27, 1948.

[92] C.E. Shannon. A Mathematical Theory of CommunicatioBell
System Technical JournaR7, 1948. available fronmttp://cm.
bell-labs.com/cm/ms/what/shannonday/paper.html

[93] Colleen Shannon and David Moore. The Spread of the Wittym.
IEEE Security and Privagy2(4):46-50, July/August 2004.

[94] SILK - System for Internet-Level Knowledghkttp://tools.netsa.
cert.org/silk/ . Last visited May, 2008.

[95] Augustin Soule, Fernando Silveira, Haakon Ringbengl @hristophe
Diot. Challenging the Supremacy of Traffic Matrices in Andyriae-
tection. InProceedings of the 7th ACM SIGCOMM conference on
Internet measureme2007.

[96] Eugene H. Spafford. The Internet Worm Program: An AsiyTech-
nical Report CSD-TR-823, Purdue University, 1988.

[97] S. Staniford, V. Paxson, and N. Weaver. How to Own therimét in
Your Spare Time. IfProc. USENIX Security Symposiug902.

[98] Stuard Staniford, David Moore, Vern Paxson, and NiekdlWVeaver.
The Top Speed of Flash Worms. Rroceedings of the Workshop on
Rapid Malcode (WORM) 2002004.

[99] Stephens, Curtis E, ed. Information technology - ATagtiment 8
- ATA/ATAPI Command Set (ATA8-ACS), working draft revisiasf,
December 2006.

[100] Standard Template Library Programmer’s Guidigp://www.sgi.

168 Bibliography

com/tech/stl/ . Last visited December, 2005.

[101] Bernhard Plattner Thomadibendorfer. Host Behaviour Based Early
Detection of Worm Outbreaks in Internet BackbonesPtaceedings
of the 14th IEEE International Workshops on Enabling Tedbgies:
Infrastructures for Collaborative Enterprises (WET ICEQX), STCA
security workshop, Lirdping, Sweder2005.

[102] Yuji Ukai and Derek Soeder. ANALYSIS: Sasser Worm.
http://research.eeye.com/html/advisories/published/

AD20040501.html , 2004. visited May, 2008.

[103] Eidgerdssischer Datenschutz und Offentlichkeitsbeauf-
tragter (EBDB). Leitfaden Internétberwachung am Arbeitplatz.
http:/iwww.edoeb.admin.ch/dokumentation/00445/00472 /
00532/index.html?lang=de , 2003. Art.-Nr. 410.054.d, Bundesamt
fr Bauten und Logistik BBL. Last visited May, 2008.

[104] US-CERT. Vulnerability Note: Witty (VU#947254)http://www.

kb.cert.org/vuls/id/947254 , 2004.
[105] P. Vitanyi and R. Cilibrasi. Clustering by compressio http:
Ilarxiv.org/abs/cs.CV/0312044 , 2003. Last visited May, 2008.

[106] A. Wagner and B. Plattner. Peer-to-Peer Systems axld®latform
for Distributed Denial-of-Service. IACM SACT Workshop, Washing-
ton, DC, USA2002.

[107] Arno Wagner. NetFlow Data Capturing and Processin§\&iTCH
and ETH Zurich. Contribution to the Architectural Panel &Con,
2004.

[108] Arno Wagner. Entropy Based Detection of Fast Intekifetms. The
Mediterranean Journal of Computers and Netwqrkgl), January
2008. ISSN: 1744-2397, Special Issue on Network Measureearah
Data Mining.

[109] Arno Wagner, Thomas ibendorfer, Lukas Bmmerle, and Bernhard
Plattner. Flow-Based Identification of P2P Heavy-Hittets. Inter-
national Conference on Internet Surveillance and Protet(iCISP),
Cap Esterel, France, 2006.

[110] Arno Wagner, Thomas ibendorfer, Bernhard Plattner, and Roman
Hiestand. Experiences with Worm Propagatiopn Simulatidm$ro-
ceedings of the Workshop on Rapid Malcode (WORM) 22033.

[111] Arno Wagner and Bernhard Plattner. Entropy Based Warmd
Anomaly Detection in Fast IP Networks. STCA security wordsh
WET ICE 2005 Linkping, Sweden, 2005.

[112] L. Wall, T. Christiansen, and R. L. Schwarrogramming Perl, 2nd

Bibliography 169

Edition. O'Reilly, 1996.

[113] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. d&miic
Spreading in Real Networks: An Eigenvalue Viewpoint, 20@2nd
Symposium on Reliable Distributed Computing, Florencaly)tOct.
6-8, 2003.

[114] N. C. Weaver.http://www.cs.berkeley.edu/ ~ nweaver/warhol.
html , 2001. visited June, 2003.

[115] Nicholas Weaver and Dan Ellis. Reflections on Witty:adyzing the
Attacker. login The USENIX Magazinelune 2004. Avaliable at
http://ww.usenix.org/publications/login/

[116] Stephanie Wehner. Analyzing Worms and Network Traffimg Com-
pression. http://arxiv.org/pdf/cs.CR/0504045 , April 2005.
Last visited May, 2008.

[117] Stephanie Wehner. Analyzing Worms and Network Traffimg Com-
pression.Journal of Computer Securitit5(3):303-320, 2007.

[118] S. Wei, J. Mirkovic, and M. Swany. Distributed Worm Sikation with
a Reallistic Internet Model. IRroceedings of the 2005 Symposium on
Modeling and Simulation of Malwaydune 2005.

[119] Diego Zamboni, James Riordan, and Yann DuponchelldBig and
Deploying Billy Goat: a Worm-Detection System. Rroceedings of
the 18th Annual FIRST Conferen@906.

[120] C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring andrli
Warning for Internet Worms, 2003. IRAroceedings of the 10th ACM
conference on Computer and communication security

[121] C. C. Zou, W. Gong, and D. Towsley. Code Red Worm Propaga
Modeling and Analysis. IProceedings of the 9th ACM conference
on Computer and communications security, Washington, D&4 U
November 2002.

[122] CIiff C. Zou. Internet Worm Propagation Simulatottp://tennis.
ecs.umass.edu/ -~ czoulresearch/wormSimulation.html , 2004.
Last visited December, 2007.

[123] CIiff C. Zou, Don Towsley, and Weibo Gong. On the Penfance of
Internet Worm Scanning Strategie®erform. Eval, 63(7):700-723,
2006.

