
Diss. ETH No. 17713
TIK-Schriftenreihe Nr. 97

Entropy-Based Worm Detection
for Fast IP Networks

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of
Doctor of Technical Sciences

presented by

ARNO WAGNER

Dipl. Inform.
born January 7th, 1969

citizen of Austria

accepted on the recommendation of
Prof. Bernhard Plattner, examiner
Prof. John McHugh, co-examiner

2008

Copyright Arno Wagner 2008.
Some rights reserved. This work is published under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 License. Commercial distribu-
tion of this work requires a prior written permission of the author. Non-
commercial distribution is permitted. Derived work is permitted with some
limitations. See the Appendix “License” for the full license statement.

Printed copies are available for a fee from Verlag Dr. Hut,
http://www.dr.hut-verlag.de , Email: info@dr.hut-verlag.de

Abstract

A significant threat to computers connected to the Internet are Internet worms.
A worm is a software program that self-replicates to other computers over a
network. Typically this involves a security compromise of the target computer
system. An Internet worm replicates using the Internet as a communication
medium. In particular, fast Internet worms are capable of compromising large
numbers of hosts in a very short time. Observed worms have managed to
compromise up to 500’000 hosts in 8 hours (Blaster worm) or 15’000 hosts
in 15 minutes (Witty worm). The compromised hosts can then beused for
secondary attacks, for example flooding-type Denial of Service attacks. The
secondary attacks are typically executed using a maliciouspayload contained
in the worm code, but worms can also be used to build up networks of com-
promised computers that are controlled remotely. In addition, the propagation
phase of a fast Internet worm can cause significant network disturbances.

We present a detection method for fast Internet worms, that is usable on
high and very high volume networks, for example Internet backbones. Dur-
ing our investigation, we determined that propagation traffic of fast Internet
worms has a specific impact on the entropy of address fields in network traf-
fic data. One specific change is that each worm-infected host contacts many
others in a short time, causing source IP address entropy to drop, and target
IP address entropy to increase. Such a connection pattern israre in ordi-
nary Internet traffic and usually only seen in scanning activities. However,
non-worm scanning has lower intensity and is generally not anetwork-wide
event. A similar change can be observed in the port numbers ofthe propaga-
tion traffic.

We used three different approaches to better understand fast Internet
worms and their impact on network traffic. First we built a simulator that is
capable of simulating Internet-wide worm outbreaks realistically in a quan-

ii Abstract

titative fashion. The simulator gave us insights into what aspects are most
important for the propagation speed of an Internet worm. In asecond step,
we modelled the impact of worm propagation traffic theoretically. We were
able to demonstrate that entropy changes in a characteristic fashion in the
presence of worm propagation traffic. In addition, we did extensive mea-
surements on a large set of traffic data to determine the changes in entropy
characteristics during worm outbreaks. The observations confirm the theo-
retical analysis and show that the expected effects can indeed be observed in
real network traffic.

The characteristic Entropy changes were used to construct athreshold-
based detector for fast Internet worms. Our method is generic and does not
require knowledge of the specific vulnerabilities used by the worm to com-
promise the target computers. The implemented prototype isscalable and
very lean with regard to computational effort. Memory consumption can be
reduced to a small constant when entropy estimation using sample entropy is
replaced with entropy estimation by using a data compression algorithm.

A primary quality measure for a worm detector is the number offalse
alerts, i.e. false positives, it produces. Typical Internet traffic contains a mul-
titude of anomalies, most of them of no further consequence.If a detec-
tor reports all these anomalies indiscriminately, it becomes of little practical
use. We evaluated the detector design on half a year of network data from
a medium-sized Internet backbone, demonstrating that is has low detection
latency and produces a low number of false positives. Validation was per-
formed with entropy estimated by sample entropy and with entropy estimated
by compression. The detection quality using compression iscomparable. We
also compared the two entropy estimation approaches directly (i.e. not in the
context of a detector) and found that results are generally similar, although
compression shows a higher sensitivity to short-term anomalies.

In addition to the scientific contribution, challenges and solutions for the
problem of capturing and handling large amounts of flow-level network data
are presented and discussed. These include experiences with design, imple-
mentation and operation of a data capturing and processing system and soft-
ware over a period of several years.

Zusammenfassung

Internet-Ẅurmer stellen eine ernste Bedrohung dar. Ein Wurm ist ein Pro-
gramm das sich selbstständigüber ein Netz auf Rechner verbreitet. Dies er-
fordert normalerweise einen Bruch der Sicherheit des Zielsystems. Bei einem
Internet-Wurm ist das benutze Netzwerk das Internet. Schnelle Internet-
Würmer k̈onnen in sehr kurzer Zeit eine grosse Anzahl von Rechnern in-
fizieren. Beobachtet wurden Zahlen von 500’000 kompromittierten Rechn-
ern in 8 Stunden (Blaster Wurm) und 15’000 Rechnern in 15 Minuten (Witty
Wurm). Die infizierten Rechner können f̈ur weitere Angriffe genutzt wer-
den, beispielsweise für Denial of Service Angriffe (Vermindern der Dien-
stg̈ute eines Dienstes bis hin zum Totalausfall, zum Beispiel durch Fluten
des Zielsystems mit Anfragen). Der entsprechende Angriffscode kann bereits
im Wurmcode enthalten sein, Ẅurmer k̈onnen jedoch auch genutzt werden,
um Gruppen ferngesteuerter Rechner aufzubauen. Zusätzlich kann die Ver-
breitungsphase eines schnellen Internet-Wurms erhebliche Beeintr̈achtigun-
gen des Netzes mit sich bringen.

In dieser Arbeit stellen wir eine Methode zur Erkennung von schnellen
Internet-Ẅurmern vor, die f̈ur sehr schnelle Netze geeignet ist. Bei unseren
Untersuchungen stellten wir fest, dass die Verbreitungsphase eines schnellen
Internet-Wurms einen characteristischen Einfluss auf die Entropie der IP-
Adressfelder im Netzwerkverkehr hat. Eine spezifische Veränderung ist, dass
jeder infizierte Rechner in kurzer Zeit viele andere kontaktiert, und daher die
Entropie in den Quelladressen fällt und in den Zieladressen steigt. Dieses
Muster ist untypisch und wird normalerweise nur beim Scannen beobachtet.
Scannen, das nicht von einem Wurm kommt, hat jedoch niedrigere Intensiẗat
und ist generell kein netzwerkweites Ereignis. Eineähnliche Ver̈anderung der
Entropie kann ẅahrend einem Wurmausbruch bei Portnummern beobachtet
werden.

iv Zusammenfassung

Wir nutzen drei verschiedene Ansätze, um Internet-Ẅurmer und ihren
Einfluss auf das Netz besser zu verstehen. Erstens wurde ein quantitativer
Simulator entwickelt, der in der Lage ist, Wurmausbrüche im Internet real-
istisch zu simulieren. Hauptresultate sind Erkenntnisse,welche technischen
Aspekte eines Wurms am wichtigsten für seine schnelle Verbreitung sind. In
einem zweiten Schritt wurde ein theoretisches Modell für den Einfluss des
durch Wurmverbreitung erzeugten Netzverkehrs geschaffen. Es konnte ge-
zeigt werden, dass die entstehenden Entropieveränderungen allgemein einem
charakteristischen Muster folgen. Zusätzlich wurden umfangreiche Messun-
gen auf einer grossen Datenmenge vorgenommen, die das theoretische Mod-
ell besẗatigen und zeigen, dass die erwarteten Veränderungen tatsächlich in
echtem Netzverkehr beobachtet werden können.

Auf Basis dieser spezifischen Entropieveränderungen wurde ein Schwell-
wert-orientierter Wurmdetektor implementiert. Der verwendete Ansatz ist ge-
nerisch und ḧangt nicht von der spezifischen Verwundbarkeit, die der Wurm
nutzt, ab. Der Prototyp skaliert gut im Verhältnis zur verarbeiteten Daten-
menge und ben̈otigt nur wenig Rechenleistung. Der Speicherbedarf kann auf
einen sehr kleinen Wert reduziert werden, wenn Entropie durch Kompression
gescḧatzt wird, anstelle einer Auszählung von Stichproben.

Ein primäres Qualiẗatsmass f̈ur einen Wurm-Detektor ist die Anzahl
verursachter Fehlalarme. In normalem Internetverkehr isteine Vielzahl von
Anomalien enthalten. Wenn ein Detektor auf diese reagiert ohne sie zu un-
terscheiden, hat er wenig praktischen Wert. Der vorgestellte Detektor wurde
auf einem halben Jahr Netzverkehr eines Internet Backbonesmittlerer Gr̈osse
evaluiert. Hierbei wurde demonstriert, dass er schnell reagiert und eine nie-
drige Anzahl von Fehlalarmen verursacht. Auf den selben Daten wurde auch
eine Detektorvariante validiert, die Komprimierbarkeit von Datens̈atzen f̈ur
die Scḧatzung ihrer Entropie nutzt. Die Ergebnisse sind von vergleichbarer
Qualiẗat. Beide Ans̈atze zur Entropieschätzung wurden auch direkt (nicht im
Kontext eines Detektors) verglichen. Es wurde gezeigt, dass sie generell zu
ähnlichen Ergebnissen führen, wobei der kompressionsbasierte Ansatz eine
höhere Sensitiviẗat gegen̈uber kurzzeitigen Anomalien aufweist.

Zus̈atzlich zum wissenschaftlichen Beitrag werden Probleme und Lösun-
gen zu Fragestellungen der Aufzeichnung und Verarbeitung grosser Men-
gen von Netzwerkdaten im NetFlow Format diskutiert. Hierbei werden die
Erfahrungen mit dem Design, der Implementierung und der mehrjährigen
Nutzung von Aufzeichungs- und Verarbeitungssystemen, sowie der erstell-
ten Software beschrieben.

Preface

The creation of a PhD thesis is a lengthy process. At the beginning, there is
an idea. The idea for this particular theses was to look at fast Internet worms
in more detail, prompted by an email exchange I had with Robert (”Bob”) X.
Cringley. In his column “Calm Before the Storm” [31], published on July 30,
2001, he predicted that the Code Red worm would reactivate soon. I sent him
a comment that this was not the way worms worked and that he should check
his facts. Fortunately, I decided to monitor the packets coming into my own
computer at the expected time of reactivation. About half anhour into the
reactivation, I sent an apology to Bob. The scan traffic from the re-awoken
worm was clearly visible on my side. At this stage, the damagewas done and
I was committed to understanding the problem of Internet worms better.

The scientific core idea of this thesis, namely to use entropystatistics
as basis of a detection mechanism, came to me some time later,after I had
established a data capturing and storage infrastructure. During the outbreak
of the Nachi.a worm (the Blaster “anti-worm”, which failed to stop Blaster,
but managed to cause a lot of additional damage), I noticed that while the
raw data volume (on flow level) increased significantly, the compressed data
volume increased only moderately. I later found out that others had the idea
of looking at entropy statistics independently from me, butnobody seemed to
really have followed up on it.

Initially, I underestimated the effort of dealing with the network data that
we had the good fortune to obtain access to because of our goodhistoric con-
tacts to SWITCH. I had to build significant infrastructure, both software and
hardware, before I could start any scientific work. Fortunately, in time, the
entropy idea turned into a working detector and I was in the unique position
of doing evaluation measurements on a really large set of real traffic data.

vi Preface

This theses owes its existence to many people. I am grateful to Robert X.
Cringely for raising my interest in worms in the first place. Iam also grateful
to Nicholas Weaver for his essay ”How to 0wn the Internet in Your Spare
Time” that drove home the point that fast Internet worms are more than just
a nuisance. Professor Plattner made my work possible in the first place by
hiring me and by facilitating access to the SWITCH data. Professor McHugh
provided valuable feedback on the thesis draft. Thomas Dübendorfer was
a valuable collaborator in the DDoSVax project and contributed numerous
ideas. Michael Collins, Andrew Kompanek and the rest of the CERT netSA
team invited me on several occasions, to FloCon and otherwise, and always
provided good discussions and insights.

I could not have built the computing infrastructure for my work without
the help of the Services Group at TIK. Hans-Joerg Brundiers and Thomas
Steingruber provided significant assistance in obtaining the components for
and setting up the computer cluster “Scylla”. On the side of SWITCH, Simon
Leinen and Peter Haag provided significant help with regard to the NetFlow
data we received from SWITCH. I am also grateful to the SNF (grant 200021-
102026/1) and SWITCH for financing the DDoSVax project. I thank Jan
Gerke and Placi Flury for being good friends during the process of writing
this PhD, and all the other members of the communication systems group for
discussions and feedback. I also had the pleasure of supervising a number
of students in their thesis work at ETH. Some of these were done under joint
supervision with Open Systems, where Stefan Lampart and Roel Vandevall
provided excellent support.

Contents

Contents vii

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Detection: Selectivity is the Key 3

1.2 Anomalies During Worm Outbreaks 5

1.3 Problem Statement . 6

1.4 Thesis Overview . 8

2 Related Work 9
2.1 Fast Internet Worms . 9

2.2 Worm Simulation . 9

2.2.1 Modelling the Internet 10

2.3 Anomaly Detection for High-Volume Networks 12

2.3.1 Black Hole Sensors 12

2.3.2 Connection Counting 13

2.3.3 Origin-Destination Flows 13

2.4 Worm Detection . 14

2.5 Entropy . 15

2.5.1 Entropy Estimation 16

2.5.2 Compression in Data Analysis 17

viii Contents

3 Worm Traffic 19
3.1 Definitions . 19
3.2 General Worm Mechanisms 20
3.3 Infection Mechanisms . 21
3.4 Target Selection Mechanism 22

3.4.1 Random Scanning 22
3.4.2 Local Preferential Scanning 23
3.4.3 Hitlist Scanning . 23
3.4.4 Topological Scanning 24

3.5 Port Characteristics . 24
3.5.1 TCP: Source Port 25
3.5.2 TCP: Destination Port 25
3.5.3 UDP: Source Port 25
3.5.4 UDP: Destination Port 26

3.6 Expected Impact of IPv6 26
3.7 Simulating Worm Traffic 26

3.7.1 Why Predict Worm Behaviour? 27
3.7.2 Worm Characteristics Relevant for a Simulator . . . 27
3.7.3 Simulation and Alternatives 29
3.7.4 Simulator Design 31
3.7.5 Impact of Internet Model 35

4 Entropy in Worm Traffic 45
4.1 Observable Worm Traffic Parameters 45
4.2 Entropy . 46

4.2.1 Intuition . 46
4.2.2 Definition . 47
4.2.3 Properties . 48
4.2.4 Changes During Worm Outbreak 49
4.2.5 Observation Examples 51

5 Entropy Estimation 55
5.1 Direct Entropy Estimation 55
5.2 Estimation by Compression 56

5.2.1 Huffman Coding 57

Contents ix

5.2.2 GZIP . 58
5.2.3 BZIP2 . 58
5.2.4 LZO . 59
5.2.5 Compression Comparison Example 59

5.3 Performance and Scalability 59
5.4 Validation . 62

5.4.1 Basis Data . 62
5.4.2 Estimation by Compression 62
5.4.3 Entropy Measurement 63
5.4.4 Linear Regression 63
5.4.5 Standard Deviation 67

5.5 Discussion . 75

6 Entropy Based Worm Detection 77
6.1 Detector Design . 78

6.1.1 Approach . 78
6.1.2 Design . 79

6.2 Calibration . 81
6.2.1 Calibration Example 84
6.2.2 Risks of Synthetic Data 85
6.2.3 Reducing False Positives 85

6.3 Scalability . 86
6.3.1 Larger Networks 86
6.3.2 Smaller Networks 87

6.4 Refinements . 87
6.4.1 More Specific Detection Results 87
6.4.2 Reducing Detection Latency 87

7 Detector Validation 89
7.1 Validation Basis Data . 89
7.2 Worms Used for Validation 90

7.2.1 The Blaster Worm 90
7.2.2 The Witty Worm 90

7.3 Quality Measures . 91
7.4 Validation Results for the Blaster Worm 93

x Contents

7.5 Validation Results for the Witty Worm 97
7.5.1 Validation Results for a Modified Witty Worm . . . 99

7.6 Discussion . 99
7.7 Simulation as a Validation Tool 104

8 Conclusion 107
8.1 Review of Contributions 107

8.1.1 Summary . 111
8.2 Limitations . 112
8.3 Relevance of Our Results 113
8.4 Directions for Future Work 114

A The DDoSVax NetFlow Toolset 117
A.1 Design Approach . 117
A.2 Architecture . 118

A.2.1 Tool I/O and Interconnect 118
A.2.2 NetFlow Version 5 Export 118

A.3 Library Components and Tools 123
A.4 Notes on Performance . 129
A.5 Lessons Learned . 129
A.6 Comparison to Other Toolsets 130

B Data Processing Infrastructure 133
B.1 Motivation . 133
B.2 Structure . 134
B.3 Software and Configuration 135
B.4 Hardware . 135
B.5 Security Concept . 136
B.6 Experiences and Lessons Learned 136

C Data Capturing System 139
C.1 Objectives . 139

C.1.1 Data Flow . 139
C.1.2 Data Properties . 141

C.2 Compression and Long-Term Storage 142
C.3 Scalability, Bottlenecks . 144

Contents xi

C.3.1 Network and Operating system 144
C.3.2 CPU and Main Memory 145
C.3.3 Disk Storage Speed 145
C.3.4 Scaling Up Observations from SWITCH Data 145
C.3.5 Performance Improvement 147

C.4 Fault Tolerance . 147
C.5 Privacy Concerns and Collaboration Possibilities 149
C.6 Lessons Learned . 151

Curriculum Vitae 154

Document License 155

Bibliopgraphy 161

List of Figures

3.1 Example of a configuration of our Internet model 32
3.2 Sapphire worm: Infection speed with original model36
3.3 Sapphire worm: Speed with adjusted model 37
3.4 Sapphire worm: Traffic with adjusted model 37
3.5 Sapphire worm: 15,000 vulnerable hosts 38
3.6 Sapphire worm: 100 sec. infection latency 39
3.7 Code Red Iv2: Measurements of infected hosts by CAIDA . 39
3.8 Code Red Iv2: Infection speed simulation 40
3.9 Code Red Iv2: CAIDA vs. simulation, CAIDA graph scaled

and shifted right for better visibility. 41
3.10 Code Red Iv2: Infection speed simulation, logscale 41
3.11 Code Red Iv2: Traffic simulation 42

4.1 Blaster worm: Flow count 52
4.2 Blaster worm: IP address entropy (TCP traffic) 52
4.3 Blaster worm: Port field entropy (TCP traffic) 53
4.4 Witty worm: Flow count 53
4.5 Witty worm: IP address entropy (UDP traffic) 54
4.6 Witty worm: Port field Entropy (UDP traffic) 54

5.1 Witty worm: Compressor comparison 60
5.2 TCP - Correlation coefficient, source IP 64
5.3 TCP - Correlation coefficient, destination IP65
5.4 TCP - Correlation coefficient, source port 65
5.5 TCP - Correlation coefficient, destination port 66

xiv List of Figures

5.6 TCP - Correlation anomaly 66
5.7 TCP - Correlation anomaly 67
5.8 UDP - Correlation coefficient, cource IP 68
5.9 UDP - Correlation coefficient, destination IP68
5.10 UDP - Correlation coefficient, source port 69
5.11 UDP - Correlation coefficient, destination port 69
5.12 UDP - Correlation anomaly 70
5.13 TCP: Estimated standard deviation ofHlzo(x)− H̃(x) per day 70
5.14 UDP: Estimated standard deviation ofHlzo(x)− H̃(x) per day 71
5.15 TCP:H̃(x) vs. Hlzo(x), source IP, 2004 72
5.16 TCP:H̃(x) vs. Hlzo(x), source IP, 2nd quarter 2004 72
5.17 TCP:H̃(x) vs. Hlzo(x), source port, 2004 73
5.18 TCP:H̃(x) vs. Hlzo(x), source port, 3rd quarter 2004 74
5.19 UDP:H̃(x) vs. Hlzo(x), source IP, 2004 74
5.20 UDP:H̃(x) vs. Hlzo(x), destination IP, 2004 75
5.21 UDP:H̃(x) vs. Hlzo(x), destination IP, 4th quarter 2004 . . . 76

6.1 Single interval detector . 79
6.2 Multiple interval detector 80
6.3 Single interval detector on data plot 81

7.1 Blaster worm: Sample entropy (top) and compression (bottom) 94
7.2 Magnification of Figure 7.1 around outbreak time 95
7.3 Blaster worm: Flows to port 135 TCP 96
7.4 Witty worm: Sample entropy (top) and compression (bottom) 100
7.5 Magnification of Figure 7.4 around outbreak time 101

A.1 Example usage ofnetflow mix 127

B.1 “Scylla” cluster structure 134

C.1 Capturing system data flow 140
C.2 SWITCH topology (weather map) from www.switch.ch . . . 141
C.3 Minimal needed socket buffer size vs. maximum CPU

scheduling delay (150kiB/s average data volume) 146
C.4 Fault tolerance mechanism on flow capturer 148

List of Tables

3.1 Internet models with 4 groups 33

3.2 Internet model with 10 groups 33

3.3 Simulation parameters . 34

5.1 Entropy estimation memory needs (worst case) 61

5.2 Average CPU time (Linux, Athlon XP 2800+) 62

6.1 Blaster worm profile. “+” means entropy exceeds baseline
during outbreak, “-” means entropy decreases below baseline
during outbreak. 84

6.2 Detection thresholds for Blaster 85

7.1 Blaster: Tight detection thresholds 93

7.2 Blaster: False positives vs. threshold tightness 96

7.3 Blaster: Sensitivity vs. reduction in number of Blasterflows
needed to trigger the detector 96

7.4 Witty: Tight detection thresholds 98

7.5 Witty: False positives vs. threshold tightness 98

7.6 Witty: Sensitivity vs. reduction in number of Blaster flows
needed to trigger the detector 99

7.7 Modified Witty: False positives vs. threshold tightness. . . 102

A.1 NetFlow Version 5 Header Format 119

A.2 NetFlow Version 5 Record Format 120

A.3 Processing 650MB bzip2 compressed data on SCYLLA node 129

xvi List of Tables

B.1 Initial and final available cluster disk space135

C.1 Typical SWITCH data volume (scaled, start of 2004) 142
C.2 Compressor comparison (1h data, Athlon XP 2800+ CPU) . 142
C.3 Maximum export burst of swiIX1 (5.12.2005-18.12.2005). 146

Chapter 1

Introduction

The emergence of the Internet as a global communication infrastructure
brought with it a multitude of new threats to networked computers. Many
widely used operating systems and applications are still plagued by frequent
vulnerabilities. While professionally administrated Internet hosts can be se-
cured to a reasonable degree today, for many computers the administrator is a
non-expert, typically the same person as the computer user.This often results
in insecure environments, where security patches are installed late or not at
all and many vulnerabilities remain unsecured for a long time. Huge mono-
cultures of hosts that have similar vulnerabilities increase the overall risk.

Consequentially, Internet security is still in its infancy. There are numer-
ous threats that can seriously impact Internet users, hostsconnected to the
Internet and general Internet network stability. Among themost important
problems are spam1, which can render email accounts hard to use by over-
loading the user with a flood of unwanted messages. There are phishing at-
tacks, where well-known Internet sites, such as those of banks, are faked and
users are redirected in an attempt to steal their passwords and account details
for use in theft, identity-theft and other criminal activity.

A significant threat are bot-nets, i.e. coordinated groups of compromised
hosts, that can be used for sending spam, conducting Denial of Service (DoS)
attacks by flooding sites with traffic and other hostile activities. Bot-nets can

1Unsolicited commercial email and other unwanted mass-mailings.There are three accepted
spellings. “SPAM” refers to the original Trademark by Hormel Foods, seespam.com . “Spam”
uses the trademark as a name. Finally, “spam” is frequently usedwhen any confusion with the
trademark should be avoided.

2 1 Introduction

have thousands of member hosts. Researchers have found bot-nets as large
as 350,000 hosts [32]. However, most attack activity from bot-nets seems
to involve only several thousands of hosts. One possible explanation is that
bot-net operators currently still face command and controlproblems that limit
bot-net activity [83].

Traditionally, bot-nets are slowly built up, until they arelarge enough for
their intended purpose. An alternative approach is to use a fast Internet worm
to quickly compromise a large number of hosts and carry out the intended
attack a short time later. An Internet worm is a piece of self-replicating code,
that replicates not locally, but remotely on other hosts reachable over the In-
ternet. Typically, this requires a security compromise on the remote hosts,
since most networked software refuses to execute unrequested code that was
sent to it over the network or otherwise places strong restrictions on it. If, for
example, a massive Distributed Denial of Service (DDoS) attack is planned,
the attack code can then be part of the worm code and the attackcan be trig-
gered at a specific time. This neatly avoids the command and control issues
and at the same time makes tracing the originator of the attack harder, at the
price of far lower flexibility. Examples of well-known fast Internet worms are
the Blaster worm [37], the Witty worm [115] and the Slammer worm [73].
The first known (slow) Internet worm is the Morris worm [96], which had its
initial outbreak on November 2, 1988.

Worm propagation can involve user activity. For example, email worms
often need active attachment opening by the user, in order toexploit a local
vulnerability. Propagation can also be fully automatic, with no user interac-
tion needed, but at the cost of more elaborate exploit code and fewer suitable
vulnerabilities. Since user interaction is typically quite slow and can delay
infection of a host by hours or longer, fast Internet worms rely on vulnerabil-
ities that can be exploited in a fully automated fashion. Fast Internet worms
that have been observed so far have managed to compromise up to several
hundred thousand hosts in a matter of a few hours [37]. Significantly faster
infection speeds are a real possibility [98].

Complete host compromise is not required in order for a host to be use-
ful as part of an attack. Application compromise is enough, as long as the
application in question has network access. An attractive target are P2P file-
sharing applications [106], although in the past worms havetypically ex-
ploited vulnerabilities in basic operating system services, such as the RPC
(Remote Procedure Call) port mapper, and in server software, such as web-
servers [37,73,102,115].

1.1 Detection: Selectivity is the Key 3

This thesis tackles the problem of detecting fast Internet worms early in
the propagation phase and on high traffic-volume networks, such as Internet
backbones. Internet backbone networks typically deliver traffic between a
large number of hosts and consequentially offer a more global traffic view,
compared to access-networks. This reduces misdetection caused by localised
DoS attacks and scanning activity. At the same time, backbone network sta-
bility can be at risk by worm propagation traffic as well. An early detection
capability is a valuable tool for operators of these networks. The main focus
of this thesis is on creating a computationally cheap detector for fast Internet
worms, that is reliable (i.e. has a low number of false positives), fast (i.e. de-
tects worms early in their propagation phase), capable of real-time operation
and suitable for use on very high traffic volume networks.

1.1 Detection: Selectivity is the Key

Anomaly detectors in general, and in particular those intended to be con-
nected to a network with high traffic volume, have to be selective in what
they trigger on. Building a general backbone anomaly detector that works
on traffic intervals with a length in the minute-range or longer is easy: It just
needs to output the “something detected” state for each datainterval. Usually,
an anomaly, for example a port-scan, will be present at any given time, result-
ing in a very low false-positives rate for such a detector design. The rate of
false negatives would be zero by construction. For obvious reasons this type
of detector is completely useless.

One problem is that unspecific detection alone is of limited value in a
defensive network monitoring setting. Alerts have to be used to determine
actual risk created by the anomaly. For example, an attack against a type of
system that is not installed in a specific network carries very low risk and
typically does not require countermeasures. On the other hand, massive scan-
ning activity directed to a specific port, that is used by a service critical to a
specific network, deserves high attention and may require immediate action.
Presently, determining the risk caused by an anomaly does usually involve
a decision by a human being at some stage. Before this stage, the detection
result needs to be specific enough that the number of false alerts is small.
Otherwise the number of messages can cause information overload problems
for the human operator. The human operator needs to have enough attention
and concentration left to be able to read and recognise critical events with
little delay.

4 1 Introduction

A second problem is that unspecific anomaly detection is of very little sci-
entific value. Again, evaluation of network traffic anomalies depends on the
type and intensity of the anomaly. Very low intensity scanning, for example,
is strictly speaking an anomaly, but is prevalent enough that it forms part of
the normal traffic profile. The only thing that can be done withunspecific de-
tection is anomaly counting. However, since one high intensity anomaly can
easily have orders of magnitude more impact than a low intensity anomaly,
these counts have very little meaning.

For this reason, it is necessary to build detectors for specific types of
anomalies, that do not trigger on other types. In fact, the frequency of a
detector to trigger on the wrong type of anomaly, thus generating a false pos-
itive, becomes one of the primary detection quality measures. For the same
reason, if a detector is capable of detecting several types of anomalies, its
detection quality and usefulness can only be judged reasonably after the de-
tection results have been split into the different types, since different anomaly
types carry different levels of importance.

Of course, specific anomaly detectors can be combined into clusters of
detectors for specific applications. If, for example, a network is vulnerable
to flooding-type DoS attacks and to fast worm propagation, then a combined
detector can be used for overall alerting, and the human operator can then be
provided with the specific information on whether a DoS attack or a worm
was detected.

This work aims to provide a detection mechanism for fast scanning In-
ternet worms, but no other anomalies. Fast Internet worms are an interesting
subject in their own right, since they can have a massive negative impact, not
only within their intended purpose, but also as a side-effect due to their prop-
agation activity. Currently, no other mechanism besides fast Internet worms
can compromise hundreds of thousands of Internet hosts in mere hours or
even less time, without previous network activity that could give early warn-
ing. Fast Internet worms represent a significant threat to the Internet, even
if the observed number of incidents is relatively low. Within the set of fast
Internet worm models, we will be able to distinguish different TCP/UDP port
profiles and scanning intensities. We will also conduct detector calibration on
different worm models.

We will use a computationally cheap detection approach, that allows de-
ployment of a larger number of differently calibrated individual sensors, even
for very fast networks. The computational effort will be linear in the number
of sensors used, with a very small constant. In order to demonstrate efficiency

1.2 Anomalies During Worm Outbreaks 5

and a low false positives rate, we will evaluate the detectordesign on a sig-
nificant set of unsampled and not anonymised network data from a medium
sized Internet backbone, spanning half a year. The data was obtained from
SWITCH (Swiss Academic and Research Network, [6]) as part of the DDoS-
Vax project [35]. The SWITCH network carried around 5% of all Swiss In-
ternet traffic in 2003 [75]. The DDoSVax project uses unsampled flow-level
representation data of all SWITCH border routers for research purposes, for
example for worm detection, detection of DoS attacks and measurements of
P2P (Peer to Peer) traffic generated by file sharing applications.

1.2 Anomalies During Worm Outbreaks

Any working worm design has one central characteristic: Each infected host
tries to infect several others. This results in a one-to-many connection profile.
If the worm cannot determine in advance which connections will be success-
ful, most of the ensuing connection attempts will be unsuccessful and hence
introduce an asymmetry into the network traffic: A smaller number of IP ad-
dresses (the ones of infected hosts) will be seen more often,while a larger
number of IP addresses (the target addresses) will be seen only once or a few
times. This change is comparable to the pattern seen when host-scanning is
performed from a small number of hosts to a large IP address range.

In addition, the infection traffic has specific characteristics with regard to
port numbers, as typically the attacked vulnerability in the target system needs
connecting to a specific TCP or UDP port. During a worm propagation phase,
the specific port is then seen as a target port in more network connections as
usual. Unlike the IP address profile, there are (rare) vulnerabilities that do not
need a specific target port, for example because the attack isagainst a part of
the network stack directly. An example is the vulnerabilityused by the Witty
worm [115], were a specific flaw in a firewall product was used. For the
source ports, a worm implementor has the choice of using a variable of fixed
source port. Both choices have been seen in deployed worm implementations
[37,73,102,115].

The described effects may have a significant effect on the entropy of the
IP address fields and port number fields found in captured data. This thesis
will show that for worms with a high enough scanning intensity (fastworms)
the entropy changes can be used to build a practical detector, that is both
accurate and efficient enough for deployment in networks carrying a high
traffic volume. It will be demonstrated that both fast detection and a low

6 1 Introduction

number of false positives can be obtained simultaneously onreal network
traffic gathered from a medium sized Internet backbone network.

1.3 Problem Statement

The central claim of this thesis is that it is possible to build a detector for fast
Internet worms based on entropy characteristics of backbone traffic observed
only at flow-level. This detector can detect fast Internet worms early, has a
low rate of false positives and low resource needs.

Demonstrating that this central claim holds, requires a number of engi-
neering and scientific contributions to be completed successfully. In detail
these are the following:

Design, build and operate a NetFlow data capturing system for the
SWITCH network (Engineering)

In order to obtain the basis data for this research, we created a system for
capturing, transport and storage of the SWITCH NetFlow data.At the time
this work was started, SWITCH used the router-exported data stream only for
real-time monitoring tasks, such as generating traffic volume statistics, but no
short- or long-term storage was done.

Design and implementation of NetFlow data processing libraries and
tools (Engineering)

No NetFlow processing tools suitable for our purposes were available. We
needed batch processing capability for large datasets, with a focus on statis-
tical and other analyses. Therefore we created our own tool-set that works
primarily on files of NetFlow v5 datagrams. Processing of datasets that ex-
ceed days or weeks of captured data is possible in an efficientway with this
tool-set. It also serves as a basis for other work on the stored SWITCH data,
see Chapter 8 for a selection.

Creation of a worm simulator to better understand worm
characteristics (Engineering / Science)

In order to better understand the impact of worm parameters such as, for
example, worm code size, scanning speed and infection delay, we created a

1.3 Problem Statement 7

simulator that allows us to study these effects. A central problem we solved
was how to model the Internet realistically with regard to worm propagation
simulation.

Model the entropy-effects of fast Internet worms theoretically (Science)

We created a theoretical model that explains the impact of worm outbreak
behaviour on flow data entropy characteristics. This model serves as a basis to
explain and understand what effects are to be expected during Internet worm
outbreaks and facilitates the search for them.

Identify and quantify the effect that the outbreak of a fast Internet
worm has on NetFlow dataset entropy scores (Science)

In order to allow the design of an entropy-based worm detector, we studied the
effects of real worms on NetFlow data entropy characteristics. This involved
both measurements on real data as well as theoretical observations. This gave
us conclusive insights into the actual entropy-related effects of fast worm
propagation.

Evaluate the suitability of compression for entropy estimation (Science /
Engineering)

Since calculating sample entropy for backbone traffic data is a memory inten-
sive task, with memory needs dependent on the traffic volume,data compres-
sion was evaluated as a possible alternative method for estimating entropy
characteristics of flow-level traffic data. We found that compression forms
a valid alternative to sample entropy. Compression has significantly lower
resource needs and a slightly higher rate of false positives.

Design a detector for fast Internet worm outbreaks based on entropy
measurements and evaluate its characteristics (Science / Engineering)

We designed, implemented and evaluated a detector for fast Internet worms.
The detector was evaluated on real traffic data. A focus of theevaluation
was on the detector calibration method, and on the number of false positives
generated for different calibrations on a significant portion of the SWITCH
traffic data. We found that the detector can deliver both early detection and

8 1 Introduction

a low rate of false positives. This is the case when using sample entropy and
when using entropy estimated by compression as basis.

1.4 Thesis Overview

Chapter 2 gives an overview of related work in the areas of anomaly detection,
entropy estimation and worm detection, as well as worm simulation. Chap-
ter 3 focuses on worm traffic and its specific characteristics. Target scanning
strategies are discussed and our approach to simulating worm propagation in
the Internet is presented. In Chapter 4 we discuss the concept of entropy,
important properties for our work and which parameters of flow-level traffic
data are suitable for an entropy analysis. The chapter finishes with some ex-
amples of observed entropy changes during worm outbreaks. The main focus
of Chapter 5 is the possibility to estimate entropy. We discuss direct esti-
mation by observed frequencies and estimation by compression. A quality
and performance evaluation of the different possibilitiesis given. Chapter 6
presents an entropy based detector design that is real-timecapable. The de-
tector works on time-series, i.e. data is separated into intervals and detection
is done for each whole interval. In order to demonstrate thatthe approach is
effective, Chapter 7 presents validation measurements forentropy estimation
by compression on flow-level traffic data from the SWITCH backbone net-
work, as well as detection results and evaluation of false positives on half a
year of recorded SWITCH traffic data. The scientific part of this thesis con-
cludes in Chapter 8, where the accomplishments are reviewed, the relevant
publications written as part of this thesis are presented and possible direc-
tions for future work are given.

The engineering contributions are documented in the Appendices. Ap-
pendix A documents the libraries and tools created as the software infras-
tructure for NetFlow data processing, that served as the basis for most mea-
surement work done in this thesis. We describe design objectives, techni-
cal solutions, performance figures and briefly compare our approach to other
tool-sets. Appendix B briefly describes experiences made with a Linux clus-
ter of 24 PCs that was created as part of this thesis to serve asthe processing
infrastructure. Appendix C describes the data capturing and storage system
and the specific problems encountered together with their solutions. A special
focus is fault-tolerant operation, since the data capturing system is intended
for multi-year continuous operation. The SWITCH network is also briefly
described.

Chapter 2

Related Work

In order to set the playing field, we will now review a selection of the rel-
evant results and publications. Note that in most cases additional literature
references can be found in the relevant chapters.

2.1 Fast Internet Worms

One of the first to recognise the immense threat worms are to the Internet is N.
C. Weaver who coined the term “Warhol Worm” [114] for very fast worms.
This work is extended in [97].

Many past fast Internet worms have been analysed in detail. Examples are
the Code Red worm variants in [34,80,121], the Blaster worm in [12,17,37,
39], the Witty worm in [90, 93, 104, 115] and the Nachi worm in [11, 13, 44].
In [123], Zou et al. analyse different scanning strategies suitable for fast
Internet worms with regard to their performance, similarities and differences.

2.2 Worm Simulation

Generally speaking, the Internet is difficult to simulate, agood overview can
be found in [42]. One problem is that the Internet traffic mix changes rela-
tively fast. For example P2P (Peer-to-Peer) traffic, often for filesharing appli-
cations, forms a major part of todays Internet Traffic [51, 109], but was not a
major concern a few years ago. An other problem is that getting an overview

10 2 Related Work

of the current Internet topology is difficult, even if the speed of the individual
connections is ignored, because this would require obtaining detailed infor-
mation from every backbone operator and every ISP on the planet. Still, with
a narrow focus the task becomes easier.

2.2.1 Modelling the Internet

Simulating the spread of a worm on the Internet requires parametrisation for
the worm and the Internet, including vulnerable host population, infection
speed and so on. The choice of these parameters directly impacts the level of
realism a simulation has. It should be noted that the relevant Internet charac-
teristics change over time. Each set of parameters is valid only for a specific
time period.

The Simple Epidemic Model

A first approach is to use a simple epidemic model, that is parametrised with
the population size, the vulnerable population, the numberof contacts per
time unit and the infection probability. For worm simulation, the infection
probability for a vulnerable target is typically one. The Internet is not ex-
plicitly modelled and full connectivity between each pair of hosts is assumed.
As a consequence, a realistic set of parameters can generally only be derived
from observations of worm outbreaks in the real Internet or from more com-
plex simulations or analyses. This limits the usefulness ofthis type of model
for research purposes. It is still well suited for demonstration purposes. A
simulator that uses this model is [122]. An epidemiology-based simulation
of the Code Red worm can be found in [121]. In [97], a variant ofthe simple
epidemic model is used to simulate worms with two scanning stages, where
an initial hit-list scan is followed by a different scanningstrategy once the
hitlist is exhausted.

The Last Mile Model

A more complex approach models the Internet by using speed and delay of
the last mile connections. The worm is modelled by its scan strategy, the
number of bytes to be transferred for successful infection and by the delay
inherent in a system compromise. These values are then used to parametrise
a simple epidemic model. The advantage is that once the characteristics of
the worm are known and a certain last mile speed profile of the Internet is

2.2 Worm Simulation 11

selected, it is possible to simulate the corresponding wormoutbreak realis-
tically. This approach allows exploring the outbreak behaviour of different
worms under different conditions. The worm characteristics can be derived
from measurements in a test-bed or from more theoretical observations. The
last mile Internet speed profile can be derived from Internetmeasurements.
We use this type of model in our own Simulator and derive its parametrisation
from global P2P filesharing application speed surveys. Chapter 3.7 presents
the details and results.

The Scale-Free Model

A scale-free network is one where the distributions of the degree of nodes
(i.e. the number of neighbours) follows a power law. Basically there are few
nodes with a lot of neighbours and also many nodes that have few neighbours.

There is a lot of work on worm propagation in scale-free networks, for ex-
ample [21,67,79,113]. The basic problem is that, concerning global scanning
strategies, for example random scanning, the Internet is a fully meshed net-
work where every host can reach every other directly by usingthe IP address
of the target. For this reason, the scale-free network modelhas only very lim-
ited applicability to worm propagation, unless the worm uses a topological
scanning strategy (see Section 3.4.4).

Topological scanning works well for email worms, Instant-Messaging
worms and similar worms, that use a local address-book to select targets
for infection. However, fast Internet worms typically use random target se-
lection, sometimes combined with an initial hitlist. It is currently unknown
whether topological scanning can achieve propagations speeds comparable to
observed fast Internet worms. Primary requirements would be a very fast lo-
cal search for targets, and the local availability of a lot oftarget addresses in
many cases.

Agent-Based Simulation Models

A third possibility is to actually simulate individual hosts and network con-
nections between them. This can be done in an agent-based framework, where
hosts are stationary agents sending each other messages to represent infection
attempts. Hosts are initialised with their probability to be infected and a time
until they start infecting others as well. The worm is its scanning and exploit
profile with regard to data transfer size and needed exchanges over the net-
work. More complex parametrisation is possible, for example a probability

12 2 Related Work

for an infection attempt to crash a host or a possible mix of different operating
systems with a similar vulnerability that have different timing characteristics
when exploited. This Internet model also allows simulationof faster local
connections and, if Internet topology is added, simulationof congestion ef-
fects. It is very resource intensive and simulations may have to be restricted
to a fragment of the Internet size or a maximum number of vulnerable hosts.
It is also difficult to obtain realistic parametrisation information with regard
to the required level of detail. This type of Internet model is used for example
in [118].

The Internet as a Test-bed

The most realistic option is to replace simulation with the Internet as the test
bed. Typically this is done using generation limited worm instances. The re-
sults provide current and realistic viability informationabout a specific worm
design and also serve to test a concrete implementation. This approach has
the advantage of no simulation error, but is completely inflexible with regard
to exploration of different scenarios. In addition, it causes significant dam-
age, is unethical and typically criminal and therefore is not a valid research
option. It is however frequently used by worm authors. Evidence of this are
outbreak-like traffic patterns that have been observed hours or days before
large outbreaks of fast Internet worms in the past. An example can be found
in [37].

2.3 Anomaly Detection for High-Volume
Networks

Anomaly detection in Internet Backbone networks is difficult because of the
amount of traffic involved.

2.3.1 Black Hole Sensors

A way to deal with these problems is to operate a ”black hole” sensor. This
type of sensor does not monitor backbone traffic, but rather traffic to a large
unused address space. Black holes detect traffic directed torandom addresses
or to a fraction of all Internet addresses that includes the black hole. Host
scans and systematic searches for specific vulnerabilitiesin hosts often cause

2.3 Anomaly Detection for High-Volume Networks 13

this type of traffic. Black holes can also detect backscattertraffic, for ex-
ample caused by responding packets to flooding attacks with spoofed source
addresses. A black hole is typically implemented by using a router configura-
tion that redirects all packets addressed to a specific address range to a single
machine. This machine counts and classifies the traffic, but does not answer.
One example of a large black hole is the CAIDA [26] black hole,also used
for worm analysis [2,90].

An variant of black hole sensors is a white hole installation. It works
similar to a black hole, but in addition has a countermeasurecapability. For
example, malware that doesimportance scanning(i.e. tries to identify the dis-
tribution of a host population with a specific vulnerabilityand then prioritises
its attack activity accordingly) can be slowed down using white holes [49].

2.3.2 Connection Counting

It is possible to build sensors that rely on a connection counting approach,
where the number of outgoing and incoming connections of a set of hosts
is monitored. This approach causes relatively high effort,since state has to
be kept and maintained for each monitored host. A second drawback is that
both directions of each network connection have to be available, which is not
always the case in a backbone scenario, due to asymmetric routing.

An early approach is the Network Security Monitor [52]. In [101] hosts
are classified into different classes calledConnector, ResponderandTraffic,
that correspond to hosts that initiate a lot of connections,have a lot of in-
coming connections and have both, respectively. This classification is then
used for anomaly detection and can, for example, be used to identify network
worms and email worms that send email directly from the compromised hosts.

2.3.3 Origin-Destination Flows

Origin-Destination (OD) flows are a method in general trafficanalysis, and
have been used for highway traffic patterns, flows of goods in logistics, migra-
tion patterns, and other applications, where traffic originates in a set of points
and goes to a set of points. It is based on estimation theory (e.g. [57]). The
traffic flow is individually measured for each pair of (Origin, Destination) and
the results are represented in matrix form. This matrix can then be used to
estimate normal flow activity by different methods, for example least-square
estimation.

14 2 Related Work

In [58] authors apply OD flows and Principal Component Analysis (PCA)
to the problem of detecting general network anomalies. To achieve this, they
use network entry points as origin as well as destination andsummarise traffic
by calculating sample entropy scores for port and IP addressfields. The re-
sulting four sets of sample entropy values are each put into aseparate matrix
per 5 minute measurement interval. In a second step, a multi-way subspace
method is used to estimate a traffic characteristics baseline. Anomalies show
up as multi-dimensional deviations from the baseline. The anomalies are then
clustered using unsupervised learning. Identifying the nature of the anoma-
lies in a cluster is done manually. Measurements given in [58] found 444
traffic anomalies in three weeks of Abilene data, containing43 false positives
and 64 events that could not be classified by manual analysis.Injected worm
traffic could also be detected. Abilene data is sampled at 1 out of 100 packets
and the last 11 bits in IP addresses are zeroed.

In [95] the authors show that OD flows are superior to input link aggre-
gation and input router aggregation as traffic data aggregation mechanism for
traffic data from the Abilene and GEANT networks. GEANT traffic data is
sampled at 1 out of 1000 packets. In [87] the sensitivity of PCA for network
traffic anomaly is examined. One identified problem is that the number of
false positives in PCA-based detection is very sensitive todimensionality of
the normal subspace and the threshold calibration. This induces the problem
of over-fitting, especially when measurements are done on relatively small
sets of data, for example traffic data from only a few weeks of observation. A
second problem is that large anomalies can contaminate the normal subspace
and may not be detected as a result. Measurements in [87] weredone using
one week of data form the Abilene and GEANT networks. It is unclear how
well the measurement results and the OD approach transfer toother networks
and what impact sampling and anonymisation have on the findings.

2.4 Worm Detection

A lot of work has been done on worm detection in the recent past. In [89], the
authors describe a fast detector for scanning worms in localnetworks. It uses
sequential hypothesis testing to identify infected hosts.SWorD [38] is a fast
worm detector based on a counting algorithm and intended to be used on the
network edge. It keeps a list of each host that has raised attention by gener-
ating scan-like traffic. An approach based on detectors in local networks that
uses a Kalman filter to detect exponential behaviour is described in [120]. A

2.5 Entropy 15

distributed worm detector, that uses sensors on individualhosts is the subject
of [27]. Billy Goat [119] is an intrusion detector for corporate networks. It
analyses traffic to unused IP addresses in order to identify infection attempts.
There is also significant work on automated worm signature generation using
honey pots. One example is [81].

2.5 Entropy

The fundamental reference for the concept of entropy in information theory
is [91] by C. E. Shannon who defined the concept first. Information theoretic
entropy (entropy for short) intuitively describes how muchuncertainty is in
a data-stream, i.e. how much information (bits) are needed to describe the
variations in the data stream that cannot be predicted. Entropy is measured in
bit/bit or bit/symbol. In digital computing bit/bit, i.e. aunit-less measure in
the range[0. . .1] is often used. If bit/symbol is selected instead, the symbol
set has to be described in order for the measure to be meaningful.

Information theoretic entropy was inspired by the concept of entropy from
the second law of thermodynamics, first described by Rudolf Julius Emanuel
Clausius, a German physicist and mathematician, in 1850. Clausius also de-
fined the concept of thermodynamic entropy in 1865. The second law of
thermodynamics intuitively states that energy spreads outand disperses if not
specifically hindered to do so [59], i.e. in a closed system after an infinite
amount of time all the available energy is evenly distributed in the available
space. This final state is regarded as having maximum entropy. The connec-
tion to information theoretical entropy is that the evenly distributed energy
state may be seen as the space being filled with random “noise”. In infor-
mation theory, the signal from a source without memory that has an evenly
distributed output over its symbol set also has maximum entropy and is basi-
cally “noise”.

Information theoretical entropy is closely connected to data compression
in the sense that no lossless stream compressor can achieve acompression
result smaller than the entropy of the original binary data stream. The entropy
here has to be measured in bit of entropy per bit of data.

When compressing a fixed binary object, Kolmogorov complexity [63] is
the dual concept to entropy. The Kolmogorov complexity of a binary object
basically describes the smallest possible representationin terms of the size
of the description of an algorithm that generates the object. Kolmogorov

16 2 Related Work

complexity can not be measured for a specific binary object, as that specific
object could be hard-coded into the language the algorithm is written in. On
the other hand, the average Kolmogorov complexity of an infinite sequence
of binary objects is equal to the entropy of the sequence.

In [60] entropy was used to analyse audit data (e.g. sendmaillogs) for
anomalies. The authors also analysed tcpdump data from a small access net-
work at MIT. One of the main results is that entropy measures lead to a high
false-positives rate when applied to smaller data sets. Theauthors argue that,
for example, system call trace data on a target system is far more likely to
detect a buffer overflow exploit being used than entropy dataon the network
traffic.

2.5.1 Entropy Estimation

Entropy can be directly computed when the probability of each individual
symbol in a data stream without inter-symbol dependencies (i.e. generated
by a source without memory) are known. The direct way to estimate entropy
is to assume independence and then estimate symbol probability by observed
frequency. This method is calledsample entropy.

A second approach is to use data compression methods, in the hope that
the compression algorithm will achieve a compression ratioclose to the (bi-
nary) entropy of the data. This method generally fails if there is hidden struc-
ture in the data.

Current research on data compression mostly focuses on lossy compres-
sion of multimedia data, exploiting imperfections in the sensors (e.g. human
eyes and ears) of the final data consumer. These techniques are not useful
for entropy estimation outside of their specific field of application and are
therefore outside of the scope of this work.

Work on estimating entropy has been done in other fields. For example the
Entropy Estimation workshop at NIPS’03 [76] deals with entropy estimation
for use in fields like Bioinformatics and speech processing with a specific fo-
cus on sampled data. While compression methods have been studied in these
fields, the processed datasets are far smaller than in our work, but usually
have significantly more structure so more complex estimation methods are
used.

2.5 Entropy 17

2.5.2 Compression in Data Analysis

In [116] compression signatures of worm code are used to identify worm fam-
ilies. A worm family consists of worms sharing a significant part of the same
code basis. The author also uses the method to do anomaly detection in ssh
connections and other types of network connections. The work is extended
in [117].

In [105] the Authors apply data compression techniques in order to iden-
tify data clusters in fields as diverse as music, genetics, virology, language
and others. The presented clustering techniques are general, and try to iden-
tify similarities between data subsets. The examples givenuse smaller and
relatively strongly structured data sets.

Chapter 3

Worm Traffic

This chapter defines the notion of an Internet worm and discusses propaga-
tion mechanisms and strategies. Except for the occasional example, we do
not discuss specific worms in this chapter, only concepts andmechanisms.
Chapter 7 includes descriptions of several worms that initially broke out in
2004. Chapter 2 discusses relevant publications. We are primarily concerned
with fast Internet worms, i.e. worms that reach initial saturation (i.e. infection
of most vulnerable and reachable hosts) in a matter of hours.

3.1 Definitions

Note that definitions different from the ones we give here arein use.

Definition 1 An Internet worm is a piece of self-replicating code that does
its replication over the Internet, i.e. the target is accessed using a layer 3
or layer 4 protocol, typically TCP or UDP. In order to propagate, the host
on which the worm code is executed (calledinfecting host or infected host)
contacts an other host (thetarget host) over the Internet, replicates its code
onto the target and triggers execution (infection) of its code on the target.
We will sometimes call the running copy of the worm code on thetarget a
child or child instance of the worm. All hosts that have the same number
of infection steps from the initially infected host(s) are called an(infection)
generation.

20 3 Worm Traffic

While in principle worms that propagate using the ICMP protocol or us-
ing raw IP in some fashion (i.e. where the protocol field in theIP header is
ignored or not used) are possible, we are not aware of any worms that use
these means to propagate.

A distinction that is sometimes made is between the notion ofa worm
and avirus. The idea is usually that a worm can propagate without user
interaction, while a virus cannot. We do not make this distinction. In a sense
we allow the user to be part of the execution environment. In this way our
definition includes email worms and other application wormsthat require a
user on the remote host to open an email attachment, for example, in order to
trigger worm code execution.

Definition 2 A fast Internet worm is an Internet worm that infects most of
the vulnerable (reachable) host population in less than a day.

We are aware that this definition is not too precise. Nonetheless we are
not aware of a better one.

Definition 3 The initial outbreak (or just outbreak for short) of a fast In-
ternet worm is the time from its first infection over the Internet until it reaches
saturation.Saturation is typically reached when around 90% of the vulner-
able host population that is reachable has been infected.

Again, the termsaturationis not too well defined. Intuitively it is reached
when the target selection strategy of the worm produces mostly unsuccessful
selections, since most vulnerable hosts have already been infected.

3.2 General Worm Mechanisms

Every Internet worm has to have a certain minimal functionality in order to
be viable:

• A worm has to be able to identify possible infection targets.

• A worm has to be able to transfer its code to a selected target.

• A worm has to be able to induce a vulnerable target to run the trans-
ferred worm code.

3.3 Infection Mechanisms 21

• A worm should be able to identify already infected targets and refrain
from re-infecting them.

Interestingly, the first three requirements are already enough. The fourth
merely improves efficiency. Also, if a service on the target system is capable
and willing to propagate the worm without having its security compromised,
then a worm can do without any kind of system compromise at all.

A compromise of the target system to some degree is customarynonethe-
less, especially when some other purpose, like espionage, sending of spam or
attacks on other systems is intended. A second reason for target system com-
promise is that many worms use security vulnerabilities to obtain resources
on the target system. The advantage is that in this way the basic execution ser-
vices of the target system become available to the worm and any functionality
its designer wants can be easily implemented.

The typical worm uses a propagation mechanism that works like this:

1. Select a potential target

2. Attempt to contact the target

3. Compromise the targets security in some way to obtain the resources
to transfer and execute a copy of itself.

4. If more infections are desired, goto step 1

5. Do damage on the local machine or do damage somewhere else using
the local machine

The last step is optional and can also be done earlier. However, in order
for a worm to propagate as fast as possible, it is a sound design choice to
not impair the functionality of an infected host until the worm has completed
most or all of its intended propagation activity from that host. In addition, the
damage may be done later to delay the discovery of the worm or in order to
allow coordinated attacks from several infection generations.

Note that we also regard data collection activities, such aslooking for
passwords or credit card numbers, as causing “damage”.

3.3 Infection Mechanisms

The primary requirement for propagation is, as stated, thata worm can trans-
fer code to a target and induce the target to execute that codewith a permission

22 3 Worm Traffic

level high enough that further propagation from the target is possible. Often
this is a multi-stage process: First the worm transfers a specific piece of data,
that causes an initial execution of some worm supplied code.In order for this
to work, the worm has to use aremote exploit, i.e. a vulnerability that can be
exploited over the network. The next steps will then be used to execute more
complex code and optionally to achieve aprivilege elevation, i.e. execution
with higher privileges. For the latter, the worm needs to usea local exploit.
i.e. a vulnerability that can be exploited locally and that increases the level
of control that the worm has over the target host. We will not discuss the
possible types of remote or local exploits here. Instead we refer the reader to
the literature as discussed in Chapter 2.

3.4 Target Selection Mechanism

Of primary interest to this thesis is the target identification and selection
mechanism a worm uses, since target selection has by far the largest influ-
ence on the actual worm traffic seen in the Internet during an outbreak. The
reason is that, while the target address may or may not be assigned to a host
and if there is a host, this host may or may not be vulnerable, the worm code
has to select targets and then try to contact them. These connection attempts,
also calledscan traffic is the most visible sign of a fast Internet worm in its
main propagation phase.

3.4.1 Random Scanning

Perhaps the most simple target selection strategy is purelyrandom scanning.
For this, the target selection code usually includes a Pseudo Random Number
Generator (PRNG) or uses an OS service with this functionality. Infection
targets are then selected by generating a 32 bit random number and using that
as the target IP address. In a more advanced setting, ranges that do not contain
normal hosts, such as multicast-addresses, can be excluded.

Care needs to be taken, that the random target selection is implemented
correctly. Interestingly, many worm writers seem to get this wrong [2, 73].
Mistakes include constant PRNG seeding after propagation,use of inferior
PRNGs with non-even value distribution and even PRNGs that cannot gener-
ate all output values and hence miss many possible targets.

3.4 Target Selection Mechanism 23

3.4.2 Local Preferential Scanning

Pure random scanning works reasonably well, but one disadvantage is that it
does not take advantage of the better network connectivity to hosts in the same
LAN or otherwise in close proximity. Local-preferential scanning is very
similar to random scanning, but it dedicates a portion of thescan activity to
addresses in the same subnet the attacking host is in. Typical implementations
have preferences for the /24 subnet and the /16 subnet of the attacking host.

One way to implement this type of strategy is to randomly scanin more
often in the local /16 subnet, but to scan the local /24 subnetfully. The latter
can be done in a simple, linear fashion, although this may trigger IDS and/or
IPS system sensors.

Local-preferential scanning has several advantages. One is that the prob-
ability of actually finding hosts with addresses close to theattackers IP ad-
dress is usually far higher than for randomly selected addresses. After all,
the local subnet contains at least one host already, namely the infected host.
This means that it is not an unused subnet. The second advantage is that the
traffic over the Internet access and backbone networks is reduced. Pure ran-
dom scanners run the risk of overloading the Internet accessconnection and
thereby hindering their own propagation. A further advantage is that the net-
work latency to hosts in close proximity is lower, leading tofaster scanning
and infection performance.

3.4.3 Hitlist Scanning

A completely different approach to random scanning is hitlist scanning. To
implement this strategy, the worm-designer precomputes a list of vulnerable
targets. This list is then included in the worm when it is deployed. The
worm then not only propagates its own code, but also parts of the hitlist to be
used by the respective child instance. Propagation schemeswith some degree
of redundancy are possible. For example, each so far unused target address
could be propagated to two or several child instances of the worm, so that
if a child instance cannot work through its list fragment completely, some
other child instance may still be successful. With this typeof redundancy the
individual copies should be worked through in different orders to maximise
propagation speed.

The use of a hitlist scanner for the full vulnerable population for a specific
exploit only makes sense if this population is relatively small. Otherwise the

24 3 Worm Traffic

transfer of the hitlist will slow down the worm considerably. A second con-
cern is that the hitlist needs to be obtained in a way that doesnot arouse sus-
picion. Otherwise the worm could find a situation were the potential targets
have already been warned before its initial propagation.

A typical use of hitlist scanning is to have a relatively small hitlist of very
attractive targets, e.g. hosts with high bandwidth or host that are geograph-
ically well placed. The worm then does its initial propagation with a hitlist
strategy and then changes over to another strategy after oneor a few infec-
tion generations, e.g. random scanning. For a good discussion of how fast a
hitlist-scanner could actually be, see [98].

3.4.4 Topological Scanning

Topological scanning bears some resemblance to hitlist scanning. However,
the information about potential targets is not precomputed, but instead ex-
tracted from the data available on the local host. Possible sources of IP ad-
dresses are ARP caches, contact lists of P2P applications, open Internet con-
nections, browser caches, address books of any kind and other sources. Host
names and URLs can also be used since they can be converted to IP addresses
by DNS lookup. It should be noted that worms that do DNS lookupwill gen-
erally be quite slow and likely not qualify as fast Internet worms according to
our definition.

One primary example of topological worms are email worms. Although
they are notInternetworms by our definition, they represent a very important
class of application layer worms. Another class of application layer worms
are IM (Instant Messaging) worms, that have also been observed in the wild.
P2P filesharing could provide an equally viable platform forapplication layer
worms, but so far no P2P worms have been observed as to our knowledge.

3.5 Port Characteristics

Scan traffic of a fast Internet worm has some limitations on how source and
target ports can be selected. These are different for TCP andUDP scan traffic.
We will now discuss the different possibilities.

3.5 Port Characteristics 25

3.5.1 TCP: Source Port

In ordinary TCP traffic, the source port for the connection initiating host, i.e.
the host that sends out the initial SYN packet, is chosen at random by the
network stack from a port range unlikely to be used as server ports. Each
concurrent connection gets its own source port, so that answering traffic can
be identified by the port it is sent to. It is possible to drop this requirement and
match answering packets by remote IP address and port. This is, for example,
done in servers that accept multiple connections on a singleport, such as web
servers.

For a worm, it would be possible to use a static source port andmatch the
answering traffic by remote IP address. However, this causesadditional effort
and does not have any real benefit. It also prevents the worm from using the
normal network stack, since the normal, OS integrated network stack cannot
do this type of matching.

3.5.2 TCP: Destination Port

The primary limitation for destination port selection in a worm is the exploit
used. If an exploit works only on a specific port, then all attack traffic has to
be addressed to that port. In addition, the connection initiating SYN packet
in a TCP connection is unable to transport data. Even if a portindependent
exploit was possible, the initial SYN would have to be sent toa port where the
remote system sends an answer. With variable ports, the wormwould need to
do a port scan in order to find such an open port. This scan wouldslow the
worm down significantly. In addition we are not aware of any TCP exploits
that can be used on a larger range of target ports.

For these reasons a worm using one or more TCP based exploits will
likely target one or a small number of TCP ports on the target system.

3.5.3 UDP: Source Port

Since UDP is connectionless, UDP based exploits can be and usually are
single-packet exploits. This means the attacking host sends a single packet to
the target host and is then either contacted back by the successfully executed
exploit code or has to do a second polling step. For both options, the UDP
source port is immaterial and can be chosen in an arbitrary fashion.

26 3 Worm Traffic

3.5.4 UDP: Destination Port

As in the case of TCP, the target port for an UDP exploit depends on the actual
nature of the exploit. If the vulnerability is present in a service running on a
specific port, the same rationale as for TCP destination ports applies and the
target port will be fixed.

Unlike TCP, UDP permits transfer of data in the first packet sent. This
allows exploit code to be sent to random destination ports, since establishing
a connection is not needed. In order for this to work, the vulnerability needs to
be in a service that processes all UDP payloads, such as a firewall or a proxy.
For example, the Witty worm (see Section 7.2.2), exploits a vulnerability in a
firewall product and sends single attack packets to random target ports.

3.6 Expected Impact of IPv6

IPv6 offers a 128 bit address space [56, 86]. It is not quite clear how much
structure will be contained in addresses actually assignedto hosts in the fu-
ture. For example only one eighth of the address space is currently assigned
to global unicast addresses. Furthermore 64 bits may be usedfor interface
identification, e.g. to hold the MAC address of an Ethernet interface. In case
of a 48 bit MAC address, there are significantly less than 48 bits of random-
ness in these 64 bits, although the structure is not very simple. Still we ex-
pect that random scanning will be ineffective with wide deployment of IPv6.
One possible way around this problem is topological scanning as discussed
before. In fact, topological scanning is already in use by email worms and
seems to work reasonably well for them. It remains to be seen how effective
such mechanisms are and whether worms can achieve fast propagation speeds
under IPv6 without resorting to large hitlists.

3.7 Simulating Worm Traffic

As part of this work we examined the possibility of simulating Internet-wide
worm traffic. The results have been published in [110]. We will describe and
briefly discuss them now. The simulation code and implementation documen-
tation is available from the author of this thesis upon request.

3.7 Simulating Worm Traffic 27

3.7.1 Why Predict Worm Behaviour?

The benefits of predicting worm behaviour are numerous:

• Better understanding of the behaviour of worms observed in the past

• Estimations of a worm’s threat potential

• Estimations of the impact of future worms on the Internet

• Forms a basis for the design of worm detection mechanisms

• Determination of parameters relevant for worm characterisation

Traffic Prediction

Traffic prediction for the worm spreading phase helps to estimate the decrease
in performance of an affected network. Slow spreading wormsmight not
even be visible in traffic monitoring tools as they are well hidden in regular
traffic variations. However, if specific characteristics ofa worm are known, a
detection might still be possible.

Speed Prediction

The Sapphire worm infected more than 90% of all vulnerable hosts in the
Internet within 10 minutes [73]. Since manual interventionis too slow to deal
with this, there is a need for semi- or fully-automatic toolsthat detect and
analyse a spreading worm and activate countermeasures in near real-time.

Threat Evaluation

Given that modern worms have the potential to infect most vulnerable hosts in
the Internet within a short time, these worms pose a real threat to the Internet
infrastructure. It is important to determine what the possibilities and limi-
tations of this attack tool are in order to concentrate countermeasure efforts
towards the most vulnerable places.

3.7.2 Worm Characteristics Relevant for a Simulator

A worm writer basically implements the following process:

28 3 Worm Traffic

1. Identify a vulnerable host

2. Compromise the target host

3. Transfer the worm and activate it

For some vulnerabilities all these steps can be combined into a single network
packet, as was done in the case of the Sapphire worm. For others, the steps
have to be done separately.

We believe that for the study of worm propagation a very abstract view
of these steps is sufficient. Steps 2 and 3 can be modelled as anexchange
of a specific amount of data with a specific protocol and optional time de-
lay, i.e. disregarding the concrete nature of the vulnerability used for target
compromise. Step 1 is a little more complicated, but can still be modelled
disregarding vulnerability details.

TCP vs. UDP

The main choice in the transport protocol is whether it is connection-oriented
or not, for simplicity, this is represented by TCP and UDP. For worms that
infect a distributed application, like a P2P system, other models might be
needed [106]. The protocol used is usually directly determined by the vulner-
ability that is exploited by the worm.

In the case of UDP, resource consumption in the attacking host is small.
A typical scenario is to send out UDP packets to random hosts,while keeping
very little state information for each target, or none at allif the attack can be
executed by sending a single UDP packet. Disadvantages are that the size of a
UDP packet is constrained to around 50 kiB1 and data packets with a payload
larger than 1472 Bytes will be transported using IP-fragmentation.

Use of TCP causes additional effort for connection establishment and er-
ror handling. On the plus side there is no data size limit. Themost significant
disadvantage of TCP is that a connection attempt to a non-existing host fails
only after a long timeout and consumes OS resources until it does. There are
ways around this, but they require that the worm implements its own modified
version of TCP, which makes worm design more difficult and increases worm
size.

1This is OS dependent. We found that e.g. Solaris has a limit around 50 kiB, Linux a little
higher. 64 kiB is the definite protocol limit.

3.7 Simulating Worm Traffic 29

Amount of Data Transferred

The time a worm needs to propagate after a vulnerable target has been iden-
tified depends mainly on worm size and available bandwidth. Additional de-
lays may be present, e.g. if a reboot of the attacked host is needed. Data trans-
fers form a specific signature of a worm and can be used for detection pur-
poses. Obviously, a large worm will generally propagate significantly slower
and far more visible, so worm writers will often aim to write small worms.

Scanning Strategy

The scanning strategy is the method used to select the next host to be probed.
See Section 3.4 for a discussion of the possible options.

Latency vs. Bandwidth Limit

Even though the Code Red I and Sapphire worms both used randomscanning,
their propagation speed was different by several orders of magnitude. The
number of Sapphire infected hosts doubled initially every 8.5 seconds while
the Code Red Iv2 worm population had an initial doubling timeof about 37
minutes [73]. The reason for this difference lies in the choice of the transport
protocol and in the size of the transferred worm code.

The Sapphire worm uses a single UDP packet with a total size of404
bytes. Since there is no connection establishment with UDP,the spreading
speed is mostly independent of latency but strongly dependent on bandwidth.
An infected host can send as many infection packets as its network link and
protocol stack allow.

Code Red uses TCP, which implies the use of a three way handshake
for connection establishment. As a consequence, latency isthe main limit
on propagation speed. In addition OS constraints limit the number of paral-
lel connection attempts that can be made. Latency limited worms can also
become bandwidth limited when their scanning traffic exceeds network re-
sources. For Code Red this happened after about 15 hours.

3.7.3 Simulation and Alternatives

We will now discuss different ways to study the characteristics of a piece of
self-propagating code.

30 3 Worm Traffic

Mathematical Models

The most powerful approach is probably the creation of a realistic mathemat-
ical model that allows behaviour prediction in a closed form, i.e. with no or
very little iteration. The problem with this approach is that such models are
not generally available and are usually hard or even impossible to create.

Testbeds

Testbeds allow to actually run self-replicating code in an isolated and lim-
ited environment so as to observe its behaviour. The most obvious limit of
a testbed is that it cannot be created in a size approaching the size of the
Internet. Another serious problem is that a testbed needs touse real self-
propagating code, which is difficult to obtain. There are also legal and moral
problems with creating and handling such code.

Real World ”Experiments”

If a testbed is too limited, why not use the Internet itself? While worm code
authors certainly take this freedom, this is not an option for scientific study
because of the damage potential. In a very limited sense the use of the whole
Internet is possible, namely in observing the behaviour of worms that have
been set free by people not hampered by ethical considerations. We have
observation equipment in place in a moderately sized backbone network to
observe the next Internet outbreaks. See Appendix C for details.

Simulation

In a sense simulation is a mathematical model in which some ofthe functions
used rely heavily on iteration. In order to reduce computational complexity,
abstraction and approximation of the inner mechanisms of the object stud-
ied is often used. This allows computation of functions thatare not well
understood in a mathematical sense. The analytical approach of mathemati-
cal modelling is replaced with an experimental approach, inwhich scenarios
are simulated and then analysed. Simulation is often a very effective tool to
understand complex processes.

A significant drawback of simulation is that due to abstraction the simu-
lation results can differ significantly from real behaviourof the system under
study. A way to verify and optimise simulation accuracy is tosimulate events

3.7 Simulating Worm Traffic 31

that have been observed in the real system and compare simulation outputs to
the measured data.

3.7.4 Simulator Design

The main component of the simulator is a script written in Perl. The simulator
can be started from the command line. It was developed under Linux, but
should run under most Unix-like operating systems without modification. It
first reads the parameter values and then opens two plot windows. Thespeed
plot shows the number of infected hosts vs. time and thetraffic plotshows the
total scanning and infection traffic vs. time. Plain text output is also available.
The simulator code is available upon request from the authorof this thesis.

Simulator Structure

Our aim was to create a modular and flexible simulator that caneasily be ex-
tended. We chose the scripting language Perl as basis for theimplementation,
since it is well suited for rapid prototyping and is fast enough for our purposes
as our evaluation in 3.7.5 shows. Perl modules are used to structure the code
and to facilitate extensions. Plotting is done with gnuplot. A pipe is kept open
to each instance of gnuplot and automatically2 flushed to generate an updated
plot when the simulator has finished a number of iteration steps.

Internet Model

The Internet model is at the very core of our simulator. We were looking
for a model that is complex enough to represent prevalent characteristics of
today’s Internet. At the same time it had to be simple enough to enable effi-
cient simulations. Inspired by the Napster and Gnutella P2Pclient connection
measurements in [88], we chose a model that disregards the properties of the
hosts and focusses on the speed of the last mile connection. We discuss other
possible Internet models suitable for worm simulation in Section 2.2.1.

Our chosen model divides the Internet inton different groups of hosts
that belong to sub-networks with similar characteristics.Each host group
has two defining parameters:bandwidthand latency. The bandwidth and
latency of a connection between any two groups are chosen as the minimum

2This can be done in Perl by usingselect(G); $| = 1; , with G being the handle of the
pipe.

32 3 Worm Traffic

bandwidth:
 128 Kbps
latency:
 300 ms

bandwidth:
 3 Mbps
latency:
 60 s

bandwidth:
 1 Mbps
latency:
 100 ms

bandwidth:
 64 Kbps
latency:
 1000 ms

1 Mbps
100 ms

3 Mbps
60 ms

1000 ms
64 Kbps

64 Kbps
1000 ms

128 Kbps
300 ms

128 Kbps
300 ms

64 Kbps
1000 ms

1 Mbps
100 ms

64 Kbps
1000 ms

128 Kbps
300 ms

Figure 3.1: Example of a configuration of our Internet model

bandwidth and maximum latency of the groups. Figure 3.1 shows a 4-group
configuration of the Internet model that is used in our simulator. Details of
the host distribution can be found in Table 3.1. We also specified a 10-group
configuration, given in Table 3.2. The average bandwidth perhost in Table
3.1 is 1157 kbit/s for Napster and 1544 kbit/s for Gnutella, for Table 3.2 it is
1176 kbit/s.

The given percentages are measurements from [88] and assumethat the
user population of Napster and Gnutella are representativefor the whole In-
ternet. The measurements were done in May, 2001. The differences between
the Napster and the Gnutella numbers show that this approachis not very
accurate. Still these are the best figures we were able to find.

The details of the underlying measurements as well as more information
on host characteristics in the Napster and Gnutella P2P filesharing systems
can be found in [88]. For continued usefulness of the model and the simulator
these numbers will have to be updated from time to time.

Our Internet model turned out to be powerful enough to simulate many
cases of worm behaviour. Still for some cases modifications were needed to
get realistic results.

The model could easily be extended to support asymmetric connections
in order to simulate ADSL or Cable modem connections that, for example,
in some European countries have a downstream speed that is two to four

3.7 Simulating Worm Traffic 33

Bandwidth Napster Gnutella Latency

64 kbit/s 32% 10% 1,000 ms
128 kbit/s 5% 14% 300 ms

1 Mbit/s 38% 38% 100 ms
3 Mbit/s 25% 38% 60 ms

Table 3.1: Internet models with 4 groups

times faster than the upstream speed. Also, the TCP slow start behaviour
is not modelled. However, as most worms are of rather small size, it could
be represented by choosing a lower bandwidth than the actually available
bandwidth.

The nature of our Internet model is well suited for a quantitative analysis
of worm spreading, however it is not suited for traffic prediction for a specific
host.

Bandwidth Napster Latency

14.4 kbit/s 4% 1000 ms
28.8 kbit/s 1% 1000 ms
33.6 kbit/s 1% 1000 ms

56 kbit/s 23% 1000 ms
64 kbit/s 3% 1000 ms

128 kbit/s 2% 300 ms
256 kbit/s 44% 300 ms
512 kbit/s 14% 100 ms

1.544 Mbit/s 5% 60 ms
44.736 Mbit/s 2% 60 ms

Table 3.2: Internet model with 10 groups

Implemented Worm Parameters

Table 3.3 provides an overview of all worm and Internet parameters imple-
mented by our simulator and gives their value range.

34 3 Worm Traffic

Worm parameter Unit Lower Upper
limit limit

Hosts in the Internet hosts 1 232

Vulnerable hosts hosts 1 Internet hosts
Start population hosts 1 vulnerable hosts
Simulation time span seconds 0 no limit
Transport protocol TCP or UDP – –
TCP resend on timeout enable/disable – –
TCP timeout milliseconds 0 no limit
Worm size (w/o header) bytes 0 65535
Parallel scans (TCP) or – 0 no limit
scans per second (UDP)
Additional time to infect milliseconds 0 no limit
Hitlist enable/disable – –
Hitlist length hosts 0 Internet hosts
Hitlist vulnerability - 0% 100%

Table 3.3: Simulation parameters

Implemented Scanning Strategies

The simulator implements three different scanning strategies, namelyRan-
dom Scanningwith even distribution,Hitlist Scanningwith a user-defined
hitlist andLocal Forced Scanningthat scans local IP addresses with a higher
rate than remote addresses.

The effect of hosts being already infected during worm spreading is taken
into account by reducing the success probability of an infection attempt:

P(infect) :=
|vulnerable hosts|− |infected hosts|

|all hosts|
(3.1)

For each time step the simulator sums up theinfection probabilities, as
defined in (3.1), for each host scanned to determine the number of newly
infected hosts. An error is introduced here because two scanning hosts could
select the same target in a time step. This error is small as long as the number
of vulnerable hosts is significantly lower than the number oftotal hosts. For
simplicity, expression (3.1) is used in the simulator.

3.7 Simulating Worm Traffic 35

Output and Reporting

The simulator produces a text file that describes all parameter values for the
simulation, as well as numeric data files suitable for Gnuplot input. In ad-
dition, the graphical plots are displayed and updated on thescreen while the
simulation is in progress.

Traffic: The traffic plot shows the total traffic generated by the scanning
and propagation of the simulated worm over time.

Spreading Speed:The spreading speed plot shows the total number of
infected hosts over time.

Simulator Limitations

The simulator assumes an even distribution of the vulnerable hosts over the
different speed groups. The Code Red worms attacked many installations of
the IIS web server with the owners of the hosts not even aware they were
running a web server, because IIS had been installed as part of other software
packages. Accordingly, the vulnerable hosts were pretty evenly distributed
over all speed groups. However, if a worm targets an application that is only
installed on hosts that are specifically designated as servers, the vulnerable
hosts will tend to be in the faster groups.

Countermeasures by network and host operators are not modelled in the
simulator. The effects of such countermeasures will vary heavily depending
on human behaviour and technical parameters and hence can hardly be mod-
elled reliably.

3.7.5 Impact of Internet Model

The Internet model serves as an approximation of the real Internet. Since
precise overall Internet bandwidth and latency figures are not available, the
model also serves as a method to estimate bandwidth and latency based on
a limited observation of these characteristics in real distributed Internet ap-
plications, in our case P2P filesharing. It turned out that the Internet models
needed to be adjusted to some degree to obtain realistic simulation results.

The Sapphire Worm

Sapphire is bandwidth-limited. Its propagation speed is roughly linear with
the bandwidth directly available to the already infected hosts. When a high

36 3 Worm Traffic

number of hosts have been infected, there can also be additional limitations
because of ISP and backbone bandwidth limits. We assume a vulnerable
population of 75,000 hosts.

Figure 3.2 shows a simulation graph obtained with the 10-group Inter-
net model from Table 3.2. The initially infected populationwas 100 hosts
distributed over the different speeds according to group size. The simulation
shows a significantly slower propagation than the observed propagation speed
of the Sapphire in [73]. A likely explanation is that the Internet became faster
since the Napster measurements were taken.

 100

 1000

 10000

 100000

 0 500 1000 1500 2000

in
fe

ct
ed

 h
os

ts

time [sec]

Figure 3.2: Sapphire worm: Infection speed with original model

If the 100 initially infected hosts are chosen from the fastest group and,
in addition, the fastest group is enlarged to 10% (taking evenly from the other
groups) the initial doubling time is about 6 seconds and the scanning rate after
3 minutes is about 50 million per second, giving a very rough approximation
for the observed Sapphire worm behaviour. The simulation then reaches an
infection level of 90% after about 275 seconds, as can be seenin Figure 3.3.
Figure 3.4 shows the infection traffic for the adjusted model. It can be seen
that the lack of fast hosts causes the propagation speed to besub-exponential.

From these experiments we conclude that the initially infected population
(obtained via hitlist or pre-infection), while critical for the propagation speed,
need not be large. 100 fast vulnerable hosts are probably easy to find. From

3.7 Simulating Worm Traffic 37

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400

in
fe

ct
ed

 h
os

ts

time [sec]

Figure 3.3: Sapphire worm: Speed with adjusted model

 1e+09

 1e+10

 1e+11

 1e+12

 0 50 100 150 200 250 300 350 400

tr
af

fic
 [b

ps
]

time [sec]

Figure 3.4: Sapphire worm: Traffic with adjusted model

38 3 Worm Traffic

there on plain random scanning is quite effective.
To demonstrate the possibilities of the simulator, we give some more ex-

amples. The parameters are the same as for the second simulation above. Fig-
ure 3.5 shows the Sapphire worm with 15,000 vulnerable hosts. The worm
now needs about 1030 seconds for a 90% infection degree. Thisdemonstrates
that UDP worms with random scanning can still be used for relatively small
vulnerable populations.

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200 1400

in
fe

ct
ed

 h
os

ts

time [sec]

Figure 3.5: Sapphire worm: 15,000 vulnerable hosts

Figure 3.6 demonstrates the effect of an infection latency,for example a
reboot after infection, here chosen to be 100 seconds. Infection of 90% of the
vulnerable hosts now takes about 660 seconds, which shows that even with a
significant infection latency the worm is still quite fast.

Code Red

To validate our simulator’s results for TCP-based worms, wetried to approx-
imate the behaviour of Code Red Iv2. Therefore we combined data from
different analyses in order to choose the most accurate parameters for our
simulation. The plot by CAIDA [74] as shown in Figure 3.7 was used as a
reference to estimate the simulator’s accuracy.

For the simulation we assumed 360,000 vulnerable hosts (3.7). The TCP
timeout of CodeRed Iv2 was set to 21 seconds ([121]) and the number of

3.7 Simulating Worm Traffic 39

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700

in
fe

ct
ed

 h
os

ts

time [sec]

Figure 3.6: Sapphire worm: 100 sec. infection latency

Figure 3.7: Code Red Iv2: Measurements of infected hosts by CAIDA

40 3 Worm Traffic

parallel threads sending out scanning packets was set to 100([80]). TCP
resending was disabled and a time step of 1 sec for the simulation was defined.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 10000 20000 30000 40000 50000 60000 70000 80000

in
fe

ct
ed

 h
os

ts

time [sec]

Figure 3.8: Code Red Iv2: Infection speed simulation

Our results for the number of infected hosts against time using the 4-
group (Napster-based) model are shown in Figure 3.8. They closely match
the reference plot. Figure 3.9 superimposes both figures to allow for easier
comparison. The log scale plot in Figure 3.10 shows the exponential increase
in the number of infected hosts nicely.

The simulation plot does not show the effects of countermeasures put into
place by network and host administrators that are present inCAIDA’s plot.
The arrow in Figures 3.7 and 3.9 marks where countermeasuresbegin to affect
the worm’s propagation speed.

Finally in the traffic log as shown in Figure 3.11, it can be observed that at
the saturation level of 360,000 infected hosts, a traffic of roughly 0.5 GBit/s
is generated. Each host accounts for roughly 1.5 kbit/s as 100 parallel threads
on each host send TCP SYN packets within each 21 seconds timeout interval.
The fluctuations in the traffic shaping stems partially from ahigh synchroni-
sation of the hosts due to a fixed time reference for all hosts in our simulator.

A simulation of CodeRed Iv2 with the 10-group model showed only neg-
ligible differences to the 4-group case. A decrease of CodeRed’s worm size
to the size of Slammer showed only a slight decrease in the generated traf-

3.7 Simulating Worm Traffic 41

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 10000 20000 30000 40000 50000 60000 70000 80000

in
fe

ct
ed

 h
os

ts

time [sec]

Figure 3.9: Code Red Iv2: CAIDA vs. simulation, CAIDA graph scaled and
shifted right for better visibility.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10000 20000 30000 40000 50000 60000 70000 80000

in
fe

ct
ed

 h
os

ts

time [sec]

Figure 3.10: Code Red Iv2: Infection speed simulation, logscale

42 3 Worm Traffic

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 0 10000 20000 30000 40000 50000 60000 70000 80000

tr
af

fic
 [b

ps
]

time [sec]

Figure 3.11: Code Red Iv2: Traffic simulation

fic. This is not surprising, as the rather large worm code onlypropagates to
vulnerable hosts and hence most of the traffic is caused by scanning other
hosts.

Simulator Performance

Simulator performance varies widely with the input parameters. We did most
of our experiments on an AthlonXP 2200+ under Linux 2.4., with a time reso-
lution of 50ms for the UDP simulations and 1 second for the TCPsimulations.

For UDP simulations we observed a simulation runtime below 20% of
simulated time for a 4 group model. With a 10-group model overall simula-
tion time was still lower than simulated time in many cases. Ahigh infection
latency time is the one factor that significantly slows things down, since more
state has to be kept. Reducing the time resolution drastically speeds things
up, this allows for a balance between accuracy and performance. We believe
that simulator performance is good enough for many applications.

The Perl-based implementation allows for easy modificationif a need to
simulate additional effects arises. We feel that this flexibility is more impor-
tant than the benefits of a faster implementation with a compiled language.
The simulator presented here is not suitable for a simulation with a large

3.7 Simulating Worm Traffic 43

number of host groups, that, for example, model individual subnets. In ad-
dition, we are not aware of speed and topology statistics that could be used
as a basis of such a model. Even if they were available, we think that Inter-
net topology is too unstable for such a detailed model to stayusable without
frequent and possibly costly updates.

Chapter 4

Entropy in Worm Traffic

Worm outbreaks in the Internet change the observed traffic mix. The main
reason is the worm scan traffic, that is generated in the search for hosts to
be infected. Actual infection traffic plays only a minor role, since most con-
nection attempts do not result in successful infection and usually fo not even
reach a valid target address. The scan traffic is most pronounced in random
scanning worms, where potential targets to be infected are selected at random
from the Internet address range. See Chapter 3 for a more in-depth discussion
of observable worm traffic.

4.1 Observable Worm Traffic Parameters

For the DDoSVax project, the primary observed data is in Cisco NetFlow
[9, 28, 29] format1. For the purpose of worm observations this means that
mainly flow information, i.e. source and destination IP addresses and ports,
as well as flow length in packets and bytes, are the primary available data.
In addition, the data is pre-aggregated into flows, i.e. unidirectional packet
streams from a source IP address/port pair to a destination IP address/port
pair. In a sense a flow forms a “communication” event, possibly having a
second flow as a closely related event, if the communication is bidirectional.
Failed connection attempts are often unidirectional, and consists of a single
flow.

1See Appendix C for a discussion of the captured data properties and the capturing system.

46 4 Entropy in Worm Traffic

As it turns out, the parameters most influenced by worm trafficare IP
addresses and ports, where entropy in particular changes ina characteristic
fashion. Volume metrics, such as byte counts, packet countsand flow counts
are of minor or no use, since they are very sensitive to (D)DoSattacks, flash
crowds and other non-worm network events.

4.2 Entropy

Entropy for the purpose of this thesis means information theoretic entropy
as defined by Shannon [92]. The name “entropy” is inspired by statistical
thermodynamics, where entropy refers to the amount of “disorder” in a ther-
modynamic system. While thermodynamic entropy is not a subject of this
theses, a good summary of it can be found in the Wikipedia article on en-
tropy [40].

4.2.1 Intuition

Information theoretic entropy, or information entropy forshort, describes the
expected information in a symbol emitted from a symbol source. The source
is state-free, i.e. each symbol has a (static) specific probability of being emit-
ted that is independent of the history of emitted symbols. The measure of
entropy is bits/symbol and intuitively describe the minimum expected aver-
age number of bits needed to describes a symbol the source emits.

On an intuitive level, this is equivalent to the problem of encoding the
symbols of an infinite symbol sequence individually so that the least number
of bits per symbol are used. The symbols in the sequence need to have global,
independent occurrence probabilities for each position ofthe symbol stream.
This also prompts the intuition that entropy is related to data compression and
forms a limit of the best case performance per-symbol data compression can
reach.

For example, the entropy per symbol corresponds to the average symbol
size in bits generated by (static) Huffman coding [54,55]. However, Huffman
coding has to use integral bits, while the true entropy measure per symbol is
a real number. It turns out that the maximum error is just short of one bit per
symbol, see Section 5.2.1.

Most other compression schemes assume and use inter-symboldependen-
cies. In real-world situations these generally exist, so that entropy based on

4.2 Entropy 47

per-symbol probabilities is not necessarily a lower size bound for a compres-
sion result. Still, the general intuition that entropy per symbol corresponds in
some form to the average bit-size per symbol produced by a data compression
algorithm is valid.

4.2.2 Definition

Definition 4 Entropy according to Shannon is defined in terms of a random
event x with possible outcomes1, . . . ,n with an associateddiscrete probabil-
ity distribution P = p1, . . . , pn. Here, pi is the probability of outcome i. P
fulfils 0< pi ≤ 1 and∑ pi = 1. Then the entropy of event x is:

H(x) =−
n

∑
i=1

p(i)log2(p(i)) [bit]

H(x) is the entropy of a single event. When dealing with a series of sta-
tistically independent events produced by a processx with distributionP for
the individual events,H(x) is the entropy per single event. It is often useful to
associate a symbol with each possible outcome and regard therandom event
as a process that produces one or a sequence of symbols.

Outcomes with zero probability do not contribute to the entropy. How-
ever, the above definition is customarily extended to allow them as well where
the zero values are treated as limitsε → 0 with ε > 0. Sinceε · log2(ε)→ 0
for ε → 0, ε > 0 andε · log2(ε) is continuous when extended by the limit at
position 0, this is unproblematic.

log2(pi) is also called thesurprisal of the outcomei. This makesH(x)
the expected value of thesurprisal of the outcome ofx. Since entropy is not
influenced by which specific outcome has which probability, we also write
H(P) for a discrete probability distributionP as defined above, instead of
H(x).

A further refinement is possible if the symbol stream is comprised of bi-
nary encoded symbols of a fixed, known number of bits per symbol, e.g. a
stream of IP addresses or TCP port numbers. In that caseH(P) can be stated
in units of bit/bit, taking the number of bits into account that each symbol
is encoded with. This is the form mostly used in this thesis. Clearly a sym-
bol encoded inton bits cannot have more thann bits of entropy, hence the
possible value ofH(P) is in the range 0≤ H(x)≤ 1 bit/bit.

48 4 Entropy in Worm Traffic

4.2.3 Properties

One of the most important properties of entropy for this thesis is that it in-
creases when the observed data pattern becomes more random,i.e. the ob-
served symbols have a more equal probability of occurring. The inverse is
true as well. Formally:

Theorem 1 Let P= p1, . . . , pn be a discrete probability distribution, with
n ≥ 2. Let w.o.l.g p1 ≤ p2. Let further P′ = (p1 − k, p2 + k, . . . , pn) for a
real number k> 0 with 0 ≤ p1 − k and p2 + k ≤ 1. Note that P’ is also a
probability distribution. Then:

H(P)> H(P′)

Informally: When the probability distribution P becomes less even, then H(P)
decreases.

Proof: It is enough to show the inequality only for the first two termsin the
sum forH(), since all other terms in the sum remain unchanged and
hence do not influence the claimed inequality.

The proof requires two steps. First we show

−(p1 · log2(p1)+ p2 · log2(p2))>
((p1−k) · log2(p1)+(p2+k) · log2(p2)) (1)

⇔
p1 · log2(p1)+ p2 · log2(p2)< (p1−k) · log2(p1)+(p2+k) · log2(p2)
⇔
0<−k · log2(p1)+k · log2(p2)
⇔
k · log2(p1)< k · log2(p2)
⇔
log2(p1)< log2(p2)

We have 0< p1 < p2 and hence the last line is true because the loga-
rithm is strictly monotonicly increasing andk is positive.

For the second step we use Gibb’s inequality [46, 47], due to Josiah
Willard Gibbs (1839 - 1903). Gibbs inequality states that for two dis-
crete probability distributionsQ= (q1, . . . ,qn) andR= (r1, . . . , rn)

H(Q)≥
n

∑
i=1

qi · log2(r i)

4.2 Entropy 49

with equality exactly whenpi = qi for all i ∈ {1, . . . ,n}.

We still need to show that

−((p1−k) · log2(p1)+(p2+k) · log2(p2))>
− ((p1−k) · log2(p1−k)+(p2+k) · log2(p2+k)) (2)

But this follows directly from Gibb’s inequality by choosing Q= (p1−
k, p2+ k, p3) andR= (p1, p2, p3) with p3 = 1− p1− p2, or omitting
p3, if it were zero.

Taking (1) and (2) together gives the claim. �

Entropy also increases when the number of observed symbols increases.
More formally:

Corollary 1 Let P be as in the last theorem. Let P′ = (p1− k, . . . , pn,k) for
a random event x′, for an arbitrary real value k> 0 with p1−k> 0. Then

H(P)< H(P′)

Proof: Note thatH(P) does not change if we add a zero probability event
to P, i.e. replace it byP′′ = (p1, . . . , pn,0). Now remember that zero
value probabilities in the definition of entropy are really limits ε → 0
with ε > 0, i.e. we can useP′′ = (p1, . . . , pn,ε). This allows us to apply
the previous theorem in reverse.

�

4.2.4 Changes During Worm Outbreak

One property of normal Internet traffic we observed in the SWITCH traffic
data is that it is mostly symmetrical with regard to a “sends data to” relation.
For most packet-streams sent from hostA to hostB there is some answering
packet-stream fromB to A. This observation holds both for TCP and UDP
traffic. On a flow-level this means that for a flow-record describing traffic
from A to B, there usually is a flow-record describing traffic fromB to A.
A typical example is a successful TCP connection, where sometraffic flows
in both directions. This observation does not hold for the amount of data
sent. For example, in P2P filesharing, the SWITCH network is a provider, i.e.
much more P2P data flows out of the SWITCH network than into it, see [51].

50 4 Entropy in Worm Traffic

Note that this thesis splits observations of traffic properties into four
classes of traffic, namely TCP, UDP, ICMP and other traffic. The main focus
of our observations is on TCP and UDP traffic. One effect is that an ICMP
“destination unreachable” as an answer to a TCP “SYN” might be missed.
However, experiments have shown that a TCP “SYN” to an IP address in the
SWITCH network will typically either result in a TCP “SYN ACK”or receive
no reply at all.

The traffic symmetry is not perfect. In the SWITCH traffic data we see
more active external IP addresses than internal ones. A typical hour during
the day in 2004 had traffic from around 800’000 external IP addresses, while
only around 200’000 internal IP addresses were found to be traffic sources.
This is likely due to IP-range scans, such as manual scans, scans from residual
worm populations, scan-like traffic from P2P filesharing clients in their start-
up phase and other scan sources. SWITCH has about 2.2 million IP addresses
in their address range, and a major part of the random scan activity remains
unanswered.

Note that traffic symmetry is not present at all if volume metrics, i.e.
packet counts and byte counts, are used. In addition, the effect of a worm
outbreak on volume metrics is typically very minor and not suitable for de-
tection purposes.

IP Addresses

During the outbreak phase of a random scanning worm, the flow-mix changes.
On one hand, massive random scanning activity can be observed. Most of
these connection attempts remain unanswered and the flow-mix becomes de-
cidedly asymmetric. The effect is that the entropy of the target IP addresses
in the observed flow data increases noticeably. This is because many more
target IP addresses are seen, which all get one or very few flows sent to them.
This causes an increase in the entropy of the flow target IP address fields.
In addition the target IP probabilities become more even, causing additional
entropy increase.

On the other hand, some (few) infected hosts start to strongly contribute
to the source IP addresses seen, since they generate a significant amount of
the overall flows seen. This leads to a less even probability distribution for
the individual source IP addresses, but at the same time the number of dif-
ferent source IP addresses remains mostly the same. This leads to an overall
decrease of source IP address entropy in the observed trafficflows.

4.2 Entropy 51

These two effects have different direction, since the scan-flows from
worm infected hosts are mostly unanswered. Otherwise an increase or de-
crease in entropy of the IP fields might be visible, but no difference between
source and destination IP addresses would be present.

Note that these effects are very weak and usually remain below the noise
threshold for entropy in packet headers. The aggregation ofall packets be-
longing to a connection is really needed to see the entropy changes during
worm outbreaks.

Ports

With regard to ports, the effects are conceptually similar,but can take differ-
ent forms. It depends on what port characteristic the dominant scan-traffic
component has. Both source and destination ports in scan-traffic can be fixed
or random. For source ports this is mainly an implementationchoice. If the
OS network stack is used by the worm, source ports will be random from an
area in the higher port numbers. For destination ports the used exploit limits
what characteristics can be used. Typically the destination port is fixed, but
not necessarily so. See Chapter 3 for a more detailed discussion.

By the nature of entropy, random port values in scan-traffic increase the
observed entropy, while fixed values decrease it. In the absence of any major
attack, SWITCH flow-level network traffic has roughly one-half random port
numbers (selected by the network stack on the connection-initiating side as
source port) and one-half fixed ports (the well-known port for the service on
the other side). Unanswered port-scans increase the randomness in the ports
seen, P2P traffic with fixed ports on both sides can decrease the amount of
randomness in the port values. Overall the normal port number entropy has a
value that still leads to a noticeable entropy increase or decrease (depending
on the worm characteristics) during the outbreak of a fast Internet worm.

4.2.5 Observation Examples

We will now illustrate the entropy effects with two examples, both taken from
the SWITCH network data. For easier comparison we use a vertical scaling
of bit/bit in the plots, i.e. bit of entropy per bit of data input, instead of
bit/symbol, i.e. bit per IP address or port number. With a bit/bit scaling the
possible entropy range is 0. . .1.

52 4 Entropy in Worm Traffic

0.0 * 10^0

2.0 * 10^5

4.0 * 10^5

6.0 * 10^5

8.0 * 10^5

1.0 * 10^6

1.2 * 10^6

11.08.
08:00

11.08.
10:00

11.08.
12:00

11.08.
14:00

11.08.
16:00

11.08.
18:00

11.08.
20:00

11.08.
22:00

12.08.
00:00

Date and Time (UTC, 2003)

suspected outbreak time (16:35)

flows to 135/TCP per 5 min

Figure 4.1: Blaster worm: Flow count

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

11.08.
08:00

11.08.
10:00

11.08.
12:00

11.08.
14:00

11.08.
16:00

11.08.
18:00

11.08.
20:00

11.08.
22:00

12.08.
00:00

IP
 A

dd
re

ss
 E

nt
ro

py
 [b

it/
bi

t]

Date and Time (UTC, 2003)

outbreak

source IP
destination IP

Figure 4.2: Blaster worm: IP address entropy (TCP traffic)

The first example is the Blaster worm [12, 17, 61]. First observed on Au-
gust 11th, 2003, Blaster uses a TCP random scanning strategywith fixed des-
tination and variable source port to identify potential infection targets. Blaster
is estimated to have infected from 200’000 to 500’000 hosts worldwide in the
initial outbreak. A flow count for the Blaster worm outbreak as seen in the
SWITCH network can be found in Figure 4.1. This count is from the routers
swiCE1 andswiCE2 , see Appendix C. Figure 4.2 shows the changes in the
IP address field entropy on flow level during the initial outbreak. As ex-
pected, the source IP address entropy falls, due to a smallernumber of hosts
(those infected) starting to generate a large fraction of the observed flows.

4.2 Entropy 53

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

11.08.
08:00

11.08.
10:00

11.08.
12:00

11.08.
14:00

11.08.
16:00

11.08.
18:00

11.08.
20:00

11.08.
22:00

12.08.
00:00

P
or

t F
ie

ld
 E

nt
ro

py
 [b

it/
bi

t]

Date and Time (UTC, 2003)

outbreak

source port
destination port

Figure 4.3: Blaster worm: Port field entropy (TCP traffic)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

20.03.
00:00

20.03.
01:00

20.03.
02:00

20.03.
03:00

20.03.
04:00

20.03.
05:00

20.03.
06:00

20.03.
07:00

20.03.
08:00

20.03.
09:00

20.03.
10:00

Date and Time (UTC, 2004)

outbreak time (4:45)

flows from 4000/UDP per 5 min

Figure 4.4: Witty worm: Flow count

The destination IP address field entropy increases, becausemore IP addresses
are observed (due to random scanning) and the probability distribution of the
individual IP addresses becomes more equal, since a large fraction of the ob-
served flows goes to randomly selected targets.

The port field entropy changes are shown in Figure 4.3. Since Blaster
uses an exploit on port 135/TCP, this target port number is constant. As a
consequence, the target port entropy in the observed trafficfalls sharply after
the outbreak, since a single value starts to become much morefrequent. Since
Blaster uses the OS network stack, the source port is chosen randomly from
a range in the higher port numbers. As a result, the entropy ofthe source port
fields in the observed flow data increases.

54 4 Entropy in Worm Traffic

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

20.03.
00:00

20.03.
01:00

20.03.
02:00

20.03.
03:00

20.03.
04:00

20.03.
05:00

20.03.
06:00

20.03.
07:00

20.03.
08:00

20.03.
09:00

20.03.
10:00

IP
 A

dd
re

ss
 E

nt
ro

py
 [b

it/
bi

t]

Date and Time (UTC, 2004)

outbreak

source IP
destination IP

Figure 4.5: Witty worm: IP address entropy (UDP traffic)

 0

 0.2

 0.4

 0.6

 0.8

 1

20.03.
00:00

20.03.
01:00

20.03.
02:00

20.03.
03:00

20.03.
04:00

20.03.
05:00

20.03.
06:00

20.03.
07:00

20.03.
08:00

20.03.
09:00

20.03.
10:00

P
or

t F
ie

ld
 E

nt
ro

py
 [b

it/
bi

t]

Date and Time (UTC, 2004)

outbreaksource port
destination port

Figure 4.6: Witty worm: Port field Entropy (UDP traffic)

The Witty worm [90,104], first observed on March 20th, 2004, is a good
second example, because it has some unexpected characteristics. Witty at-
tacks a specific firewall product. It uses UDP random scans with fixedsource
port andvariabledestination port. Witty infected only about 15’000 hosts. A
plot for the count of Witty generated network flows in the SWITCH network
can be found in Figure 4.4. This count is also from the routersswiCE1 and
swiCE2 , see Appendix C. The IP address entropy changes for Witty, shown in
Figure 4.5 are similar to Blaster, if different in magnitude. The changes in the
port address fields of the observed flows, however, are exactly the opposite of
the observations for Blaster, since Witty fixes the source port and varies the
target port.

Chapter 5

Entropy Estimation

Assume we have a symbol stream emitted from a (real) source. If the individ-
ual symbol probabilitiesp(i) are known, and they do not depend on the other
symbols in the symbol stream, then entropy can be directly and accurately
calculated using the definition from Chapter 4. Usually the symbol probabil-
ities are only known beforehand when the symbol stream is synthesised or
produced by a well understood process. For our purposes neither is the case.
Hence we need methods to estimate the entropy in a symbol stream.

5.1 Direct Entropy Estimation

The most direct way to estimateH(x) for a given, finite symbol sequencex,
over the symbol set 1, . . . ,n, is to estimate each individual symbol probability
p(i) by its actual number of occurrencesf (i) in the sequence, divided by the
length of the symbol streaml(x). This gives the following estimation for the
per-symbol entropy:

H(x)≈−
n

∑
i=1

f (i)
l(x)

log2
f (i)
l(x)

[bit]

The main source of errors on this type of estimation is that the symbols
probability for different positions are often not independent in practice, and
this approximation method will yield a value that is too large. Obtaining a
more accurate measurement for this case would entail combining individual

56 5 Entropy Estimation

symbols into larger ones to capture the interdependency. This only works if
there is a maximum distance over which symbols depend on eachother. If
there is no such maximum distance, other measures than entropy are needed
for accurate measurement of information.

The computational effort for this type of estimation is determined by the
effort of estimating the individual probabilities. There is no way around
counting how often each symbol is contained in the sequence,but this is also
enough. Hence we have the following algorithmic complexity:

• Time: O(l(x))
The basic assumption here is that counting each stream position takes
constant effort. This is realistic, if arrays or hash-tables are used to
store the individual probabilities. The constants are determined by the
element-access effort for the table type used.

• Space:O(n)
For each observed value we need one space unit to store its frequency.

In practice, the limiting factor is the table used to store the symbol counts.
For example a hash-table used to store frequencies of IP addresses has a per-
element memory need of 4 Bytes for the frequency and 4 bytes for the key (IP
address). Table-external collision resolution (e.g. chaining colliding table el-
ements in a linked list) typically adds another 4 bytes per element for a pointer
and 4 bytes in the base table if a load-factor of around 1.0 is assumed. The
worst case storage need for such a hash-table (reached e.g. when spoofed,
random addresses are observed) is 8·232Bytes= 32GB for table-internal col-
lision resolution and 16·232Bytes= 64GB for table-external collision reso-
lution. This number may be prohibitively large. The relevant figures for the
SWITCH data are discussed in Section 5.3.

5.2 Estimation by Compression

A second, more indirect approach to entropy estimation usesthe connection
between entropy and channel capacity. The intuition is thatthere is no way
to push more bits of entropy per time unit through a specific channel than its
channel capacity, while this limit can (theoretically) be reached. Compressing
the input data stream or diluting it with redundant symbols does not change
this limit. If a (theoretical) perfect compressor, that removes all redundancy,

5.2 Estimation by Compression 57

is used on the original, binary encoded, symbol stream, we must get a bit-
stream that goes through the channel with the highest possible entropy per
bit sent. Hence this compressed binary stream must have exactly one bit of
entropy per bit used in the encoding.

This idea can be used to estimate entropy in a finite data-stream: First
compress perfectly and obtain the exact entropy as the resulting number of
bits. Then divide this number by the original number of bits in order to obtain
the original entropy in[bit/bit].

The main source of error in this approach is that real compressors are not
perfect. Since we are mainly interested in relative comparison of entropy in
normal data and during a worm outbreak, this type of error is not necessar-
ily a problem. One definite advantage of compression over direct entropy
estimation, as discussed in Section 5.1, is that most moderncompressors as-
sume that symbols are interdependent and will take this intoaccount during
compression.

We evaluated different compression methods, all of them lossless, in order
to find one suitable for our purposes. We now briefly describe each compres-
sion method.

5.2.1 Huffman Coding

Huffman coding [54, 55] assigns a code word of variable size to each binary
symbol to be encoded. It does so based on observed symbol probabilities.
The code words are in a prefix format, which allows decoding inthe absence
of length fields. The prefix property does not impact code wordlength. The
average number of bits needed per symbol in a Huffman encodeddata stream
x is

Huff(x) =−
n

∑
i=1

p(i)⌈log2(p(i))⌉ [bit/symbol]

This number is very similar to entropy, except that the number of bits for
each specific symbol is rounded up to the next integral value.The only addi-
tional error introduced compared to direct entropy estimation is the rounding.
i.e. the maximum additional error is smaller than 1bit/symbol. If the proba-
bilities are all fractions of the form 1/2i with i a natural number, then Huff(x)
andH(x) are identical. On the other hand the computational effort for Huff-
man coding, even if only done to the extent needed to obtain the output size,
is comparable to direct entropy estimation, since Huffman coding first deter-

58 5 Entropy Estimation

mines symbol frequencies and then builds an encoding tree based upon these
frequencies. For this reason Huffman coding has not been evaluated further.

5.2.2 GZIP

The GNU zip compressor [50, 84, 85] is a well-known, well established and
standardised compression program and compression libraryin the UNIX
world. GNU zip uses the LZ77 [62, 65] algorithm and binary Huffman cod-
ing. This combination is usually referred to as the DEFLATE algorithm.
LZ77 works by keeping a ring-buffer with the most recently seen data. It
then tries to find the current symbol sequence in that buffer and replaces it by
a reference-length pair if found. The ensuing stream of original symbols and
reference-length pairs is then further compressed with Huffman coding.

GNU zip is a stream compressor, i.e. each byte in the compressed data
stream can depend on any or all bytes in the uncompressed datastream up
to that point. The compression performance of gzip is average in all regards.
It compresses reasonably fast and achieves reasonable compression sizes. A
comparison on the raw data relevant for this thesis can be found in Section
5.3.

5.2.3 BZIP2

The bzip2 compressor [24, 25] was first publicly released in July 1996 as
version 0.15 by Julian Seward. Today bzip2 has reached version 1.03 and
has been production-stable for many years. Currently bzip2is used, e.g., to
compress Linux kernel source packages before distribution.

Different from gzip, bzip2 is a block-compressor. It takes between 100kB
and 900kB (depending on parametrisation) of input data and compresses it
into a block of output data. The output data block is not dependent on any
previous data compressed. If a bit-error occurs in the compressed data, only
one block of input data is lost.

The first compression step done in bzip2 is the Burrows-Wheeler trans-
form [22,23] which transforms repeated symbol sequences into sequences of
identical letters. It then performs a move-to-front transform [8, 16] in order
to condition the data for a final step of Huffman coding. Compression perfor-
mance of bzip2 is very good, but it is slow and uses a relatively large amount
of memory. See Section 5.3 for a performance comparison withthe other
compressors.

5.3 Performance and Scalability 59

5.2.4 LZO

The LZO [7, 66] compressor family was created by Markus F. X. J. Ober-
humer. LZO stands forLempel-Ziv-Oberhumer. It is another variant of the
Lempel-Ziv algorithm. The GNU command line tool that encapsulates the
LZO library is calledlzop.

LZO is primarily optimised for very fast decompression and very low
memory consumption. Compression speed can be varied between very fast,
with a low compression factor, to relatively slow and comparable to gzip in
compression factors. We are primarily interested in the LZOcompressor in
its fastest variant. Again, see Section 5.3 for a performance comparison with
the other compressors.

5.2.5 Compression Comparison Example

An example that shows the compression performance of the three different
compressors side by side can be found in Figure 5.1. The plot shows the
compression ratio changes during the Witty worm outbreak for the destination
IP fields on flow level for the gzip, bzip2 and LZO compressors,respectively.
The y-axis gives the relative compressed size, i.e. a value of 1.0 means no
compression at all, 0.5 means the compressed data took half as much space
than the raw data, etc..

It can be seen that the three different plots are shifted vertically against
each other, in a way that is consistent with the expected compression perfor-
mances of the three compressors. However, the shapes are very similar, as is
the change during the outbreak. This supports the expectation, that while the
compression ratio is very dependent on the compressor used,changes in com-
pression ratio are less dependent and, even more importantly, the reaction to
strong changes in the input data caused by a worm, is only weakly dependent
on the compressor used.

5.3 Performance and Scalability

In order for an approximation method to be viable, it has to have some sig-
nificant advantages over other measurement methods. For entropy estimation
by compression, these advantages are both in speed and memory needs.

Table 5.1 gives the maximum memory needs for the different compres-
sors. For the compressors, these numbers are absolutes and do not depend

60 5 Entropy Estimation

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

20.03.
00:00

20.03.
01:00

20.03.
02:00

20.03.
03:00

20.03.
04:00

20.03.
05:00

20.03.
06:00

20.03.
07:00

20.03.
08:00

20.03.
09:00

20.03.
10:00

In
ve

rs
e

C
om

pr
es

si
on

 R
at

io

Date and Time (UTC, 2004)

destination IP: lzo
destination IP: gzip
destination IP: bzip2

Figure 5.1: Witty worm: Compressor comparison

on the input data processed. These needs are per compressor instance. While
bzip2 uses a moderate amount of memory, the memory needs of gzip and
especially lzop are very small.

For comparison we give the memory consumption to be expectedfor en-
tropy estimation by direct frequency estimation (i.e. counts for the different
values) in Table 5.1 as well. The number given assumes a non-outbreak sit-
uation with around 60 million flows per hour and measurementsin 5 minute
intervals. We also assume the use of a hashing method that uses chained col-
lision resolution (colliding elements are placed into a linked list) and a load
factor around 1.0. This leads to 16 bytes of memory per observed source and
destination IP address. Thehashed table data structure, described in more
detail below and in Appendix A, has these properties. Ports can be counted
with far smaller memory effort, an array with 256kB size is sufficient for both
source and destination port.

Using internal collision resolution and direct element storage, it would be
possible to reduce the number of bytes needed per element down to a min-
imum of 8 bytes. This would however reduce the table speed drastically,
because the number of collisions would increase dramatically and secondary
collisions (collisions happening as a result of collision resolution) would be-
come a concern. In practice, a table with internal collisionresolution would
only be filled to a load factor significantly smaller than 1.0.This in turn in-
creases the memory needed and the size advantage shrinks or vanishes.

5.3 Performance and Scalability 61

Note that the worst case memory consumption for direct entropy estima-
tion by frequency counts is directly dependent on the numberof flows seen in
each measurement interval. The worst-case assumption is that all IP addresses
seen are different. On one side, this means that the worst case is usually not
reached during normal operation. On the other side, the number of flows can
increase dramatically during an attack. For example, a simple SYN-flooding
attack with randomly spoofed source IP addresses places a huge load on the
table used to estimate source IP address entropy. As a consequence, a large
amount of memory needs to be kept available for the counting algorithms
usage in order for it to be of any use during attacks.

Table 5.2 shows the relative CPU times needed in order to compress all
four fields of interest for a typical hour of data, containing60 million flows.
The measurement is for 5 minute intervals without overlap. It can be seen
that even the slowest compressor (bzip2) performs a lot faster than necessary
for real-time operation on the SWITCH data. The fastest compressor (LZO
in its lzo1x-1 variant) is fast enough so that in a real-time sensor the main
bottleneck will be transferring the data into memory.

For comparison we also state the time needed for direct entropy estimation
by estimation of the value frequencies. The measurements were again done
using thehashed table data structure described in more detail in Appendix
A. It can be seen that direct frequency counting is comparable in CPU needs
to the slowest compressor we evaluated.

Method Memory needed per data stream

bzip2 7600 kB (fixed maximum)
gzip 256 kB (fixed maximum)
lzo1x-1 64 kB (fixed maximum)
direct frequency counts 60 MB (at 60 mill. flows/hour)

Table 5.1: Entropy estimation memory needs (worst case)

Since CPU load is comparably low for all approaches, memory becomes
the primary concern, at least on the SWITCH data In addition tothe signif-
icantly lower memory needs of the compression approach, allcompressors
have fixed bounds on maximum memory needed. Direct entropy estimation
by counting value frequencies has an upper memory bound dependent on the
number of different values seen. This presents a potential weakness in the
algorithm, which could lead to failure due to memory exhaustion in attack
situations.

62 5 Entropy Estimation

Method (Library) CPU time / hour
(at 60’000’000 flows/hour)

bzip2 (libbz2-1.0) 169 s
gzip (zlib1g 1.2.1.1-3) 52 s
lzo1x-1 (liblzo1 1.08-1) 7 s
direct frequency count 176s
(5 minute intervals)

Table 5.2: Average CPU time (Linux, Athlon XP 2800+)

5.4 Validation

Entropy estimation by compression is a heuristic approach.Its primary ad-
vantages are high speed and very low memory usage. Due to its heuristic
nature, its validity has to be demonstrated for each specificapplication, com-
pression algorithm and data set. In the last section, we demonstrated its via-
bility as an entropy estimator for the purpose of detecting fast Internet worms.
We will now drop this restriction and examine the correspondence between
sample entropy and entropy estimated by LZO compression.

5.4.1 Basis Data

We explore the suitability of compression for entropy estimation, using Net-
Flow data from the SWITCH network (see Appendix C). The validation data
spans the whole year of 2004, but is limited to the flows exported by the
routersswiCE1 andswiCE2 , which represents about half of the exported flow-
level data. The reason for this limitation is to avoid artefacts that result from
an overload in the remaining router,swiIX1 , during the observation period.

5.4.2 Estimation by Compression

We only consider the fastest compression method LZO here. Itis likely that
the other two compression methods will have comparable performance. LZO
is the fastest compressor with the least resource usage, andshowing that it
performs well is sufficient, since this removes the incentives to use the other
compressors.

Recall that the entropy value estimated by compression is given as the
original size in bits of a (finite) symbol streamx divided by its compressed

5.4 Validation 63

size in bits. We will call this estimation with the LZO compressorHlzo(x)
here. FormallyHlzo(x) is given by

Hlzo(x) =
size(x)

size(lzo(x))
[bit/bit]

5.4.3 Entropy Measurement

We compare entropy estimated by compression with entropy estimated by
value frequency, i.e. against sample entropy. Recall that sample entropy uses
the number of occurrencesf (i) of symbol i in data streamx, divided by the
overall number of symbolsl(x) in x to obtain an estimation ˜p(i) for the prob-
ability p(i) of symboli occurring, i.e.

p̃(i) =
f (i)
l(x)

This allows us calculate an estimationH̃(x) of the entropyH(x) by

H̃(x) =−
n

∑
i=1

p̃(i)log2(p̃(i)) [bit/symbol]

In order to normalise this measure to bit/bit, we need to divide by the
symbol sizes as well. The symbol size is 32 bit for IP addresses and 16 bit
for port numbers. We get

H̃(x) =−
1
s

n

∑
i=1

p̃(i)log2(p̃(i)) [bit/bitl]

We will show thatHlzo(x) and H̃(x) are strongly correlated. The first
method used consists of scatterplots withHlzo(x) on the horizontal axis and
H̃(x) on the vertical axis. The second method uses the standard deviation of
Hlzo(x)− H̃(x). Both comparisons are done for the full 2004 data. TCP and
UDP flows are treated separately.

5.4.4 Linear Regression

Linear regression is a well-known statistical method that can be used to de-
termine a linear relationship between the first and second component of a set

64 5 Entropy Estimation

of two-dimensional coordinates. Its first result is a line given as

y= a+bx

werea andb are constants. The line describes the estimated linear relation
between the coordinates. The second result is a correlationcoefficientr ≤ 1,
that describes the accuracy of the linear relationship. Values close to 1 stand
for a good correlation, i.e. a close to linear relationship.The exact definition
can be found in most introductory texts on statistics, e.g. [53].

In order to determine the quality of the approximation of entropy values
by LZO compression, we have calculated the correlation coefficients in one-
week intervals (basis measurement interval is 5 minutes) for the SWITCH
network traffic of the year 2004.

Findings - TCP

The plots for the correlation coefficientr for TCP traffic can be found in
Figures 5.2, 5.3, 5.4 and 5.5. All, except the destination IPplot, indicate
a good and mostly linear relationship between sample entropy values and
compressibility-derived entropy approximation using thelzop compressor.

 0

 0.2

 0.4

 0.6

 0.8

 1

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.

C
or

re
la

tio
n

C
oe

ffi
ci

en
t (

7d
 in

te
rv

al
)

Date (2004)

Figure 5.2: TCP - Correlation coefficient, source IP

The destination IP plot in Figure 5.3 shows reasonable correlation values,
except for a number of sharp, negative spikes. A primary suspect for these
spikes is scan activity against a subnet. If the scans are conducted in a way
so that the repetitions strongly show up during the 5 minute sample entropy

5.4 Validation 65

 0

 0.2

 0.4

 0.6

 0.8

 1

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.

C
or

re
la

tio
n

C
oe

ffi
ci

en
t (

7d
 in

te
rv

al
)

Date (2004)

Figure 5.3: TCP - Correlation coefficient, destination IP

 0

 0.2

 0.4

 0.6

 0.8

 1

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.

C
or

re
la

tio
n

C
oe

ffi
ci

en
t (

7d
 in

te
rv

al
)

Date (2004)

Figure 5.4: TCP - Correlation coefficient, source port

measurement intervals, yet are not near enough together in the destination IP
address stream found in the NetFlow data, then the lzop compressor will not
detect the repetition. At the same, time the sample entropy calculation may
be influenced because of its larger measurement interval. Asa consequence,
sample entropy can be significantly lower during specific scan activity, than
LZO estimated entropy.

Figures 5.6 and 5.7 show scatterplots of the data around the first and last
negative spikes in Figure 5.3. Both plots show that the values are closely
grouped together in the higher entropy area, consistent with stronger scan ac-
tivity. The plots also show that the actual approximation isstill reasonable,

66 5 Entropy Estimation

 0

 0.2

 0.4

 0.6

 0.8

 1

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.

C
or

re
la

tio
n

C
oe

ffi
ci

en
t (

7d
 in

te
rv

al
)

Date (2004)

Figure 5.5: TCP - Correlation coefficient, destination port

since the error is strongly localised. The results from linear regression anal-
ysis are not very significant for a situation were the values are clustered in a
small area, since it is then very sensitive to small errors.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

H
 [b

it/
bi

t]

lzop [bit/bit]

Correlation Anomaly: 5.5.2004 - 9.5.2004

destination IP

Figure 5.6: TCP - Correlation anomaly

5.4 Validation 67

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

H
 [b

it/
bi

t]

lzop [bit/bit]

Correlation Anomaly (TCP): 11.11.2004 - 15.11.2004

destination IP

Figure 5.7: TCP - Correlation anomaly

Findings - UDP

The results of the linear regression analysis for UDP trafficare similar to the
TCP results. Figures 5.8, 5.9, 5.10 and 5.11 show good correlation for all
LZO approximations, except the destination IP values. The reasons for the
suboptimal destination IP address results are the same as for the TCP case,
namely scanning activity with partially randomised targetaddresses, where a
larger data window than the 64kB used by the lzop compressor is needed to
recognise the limited range of the scan targets. Figure 5.12gives a scatterplot
of the time around one of the stronger anomalies. The observed clustering is
similar to the observation for the TCP case.

5.4.5 Standard Deviation

To complement linear regression analysis, we examine the standard deviation
of Hlzo(x)−H̃(x). This expression characterises the distance between the two
values in each pair. While linear regression analysis determines a non-local
correlation by trying to fit the value-pairs with a line, the standard deviation
of Hlzo(x)− H̃(x) gives a measure of the variation in distance between the

68 5 Entropy Estimation

 0

 0.2

 0.4

 0.6

 0.8

 1

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.

C
or

re
la

tio
n

C
oe

ffi
ci

en
t (

7d
 in

te
rv

al
)

Date (2004)

Figure 5.8: UDP - Correlation coefficient, cource IP

 0

 0.2

 0.4

 0.6

 0.8

 1

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.

C
or

re
la

tio
n

C
oe

ffi
ci

en
t (

7d
 in

te
rv

al
)

Date (2004)

Figure 5.9: UDP - Correlation coefficient, destination IP

two values, which is still meaningful when the value pairs are all clustered
together in a small area.

Since we do not know the distribution ofHlzo(x)− H̃(x), we cannot com-
pute its standard deviation directly. Instead, we will estimate the standard
deviationσ by s defined as

s=

√

1
N−1

N

∑
i=1

(xi − x̄)2

were x̄ is the arithmetic mean ofHlzo(x)− H̃(x) over the measurement

5.4 Validation 69

 0

 0.2

 0.4

 0.6

 0.8

 1

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.

C
or

re
la

tio
n

C
oe

ffi
ci

en
t (

7d
 in

te
rv

al
)

Date (2004)

Figure 5.10: UDP - Correlation coefficient, source port

 0

 0.2

 0.4

 0.6

 0.8

 1

01.01. 01.03. 01.05. 01.07. 01.09. 01.11. 01.01.

C
or

re
la

tio
n

C
oe

ffi
ci

en
t (

7d
 in

te
rv

al
)

Date (2004)

Figure 5.11: UDP - Correlation coefficient, destination port

interval (e.g. a day). Thexi are the values forHlzo(x)−H̃(x) for the individual
measurements on the basis date. We use a random error assumption.

In our case the measurement intervals are 5 minutes long without overlap,
as before. Finally,N is the number of basis intervals we calculate the standard
deviation for, i.e.N = 288 for a day.

Findings

The plot in Figure 5.13 showss calculated individually for each day in 2004
for TCP. The plot for UDP is in Figure 5.14.

70 5 Entropy Estimation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

H
 [b

it/
bi

t]

lzop [bit/bit]

Correlation Anomaly (UDP): 7.7.2004 - 11.7.2004

destination IP

Figure 5.12: UDP - Correlation anomaly

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

01.01.
00:00

01.03.
21:00

01.05.
18:00

01.07.
15:00

01.09.
12:00

01.11.
09:00

01.01.
06:00

S
ta

nd
ar

d
de

vi
at

io
n

(2
4h

 in
te

rv
al

)

Date and Time (UTC, 2004)

source IP
destination IP

source port
destination port

Figure 5.13: TCP: Estimated standard deviation of Hlzo(x)− H̃(x) per day

It can be seen that the standard deviation for all IP and port fields is con-
sistently very low over the whole year for both TCP and UDP traffic. We omit
detail plots, since they do not show more than the yearly plots. We observe
that attacks of any kind do not lead to large differences between entropy es-
timated by value frequency and entropy estimated by LZO compressibility.

5.4 Validation 71

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

01.01.
00:00

01.03.
21:00

01.05.
18:00

01.07.
15:00

01.09.
12:00

01.11.
09:00

01.01.
06:00

S
ta

nd
ar

d
de

vi
at

io
n

(2
4h

 in
te

rv
al

)

Date and Time (UTC, 2004)

source IP
destination IP

source port
destination port

Figure 5.14: UDP: Estimated standard deviation of Hlzo(x)− H̃(x) per day

This demonstrates that LZO compressibility is a good approximation for rel-
ative entropy changes in the observed data. However, it should be noted that
while the match is quite good for each individual day, there are long-term
drift effects that do not show up in these plots.

Scatterplots

In order to demonstrate some of the observed effects further, we provide a
number of scatterplots for longer time intervals. The measurement interval
length is 5 minutes, as before. All plots haveH̃(x) on the vertical axis and
Hlzo(x) on the horizontal one. We give one scatterplot for the whole year 2004
data and use plots for individual quarters of 2004 to illustrate specific effects.

Ideally the scatterplots would show a 1:1 relationship betweenH̃(x) and
Hlzo(x), i.e. the measurements would be clustered closely around the z = y
line. The actual results show a linear relationship below this line in some
cases, i.e. compression reacts stronger to entropy changesthan direct esti-
mation by value frequencies. Other cases show linear clustering on a line
parallel to the x = y line, i.e.Hlzo(x) is larger thanH̃(x). We will now discuss
the individual results.

TCP: Source IP

The scatterplot for the source IP addresses can be found in Figure 5.15. As
can be seeñH(x) andHlzo(x) are strongly correlated for source IP addresses.

72 5 Entropy Estimation

There is some shift over the year. Figure 5.16 shows only the second quarter
of the same year. Clearly the values are less scattered. The reason is that less
long-term parameter shift occurs due to the shorter measurement interval.

Figure 5.15: TCP: H̃(x) vs. Hlzo(x), source IP, 2004

Figure 5.16: TCP: H̃(x) vs. Hlzo(x), source IP, 2nd quarter 2004

5.4 Validation 73

TCP: Source Port

The scatterplot for the source port numbers can be found in Figure 5.17. The
measurements show thatHlzo(x) values go up to 1, whilẽH(x) values remain
below about 0.85 with the exception of a small number of measurements. The
TCP source port field is clearly a high-entropy field. One other effect that can
be observed is that the left side of the plot seems to have two “tails”, one at
about 0.2 above the other. This can also be seen very clearly in the scatterplot
for the third quarter in Figure 5.18. The effect is less pronounced in the other
quarters (not shown) but still there. Since the number of dots in both tails is
very small, we expect they are due to some specific scanning activity that may
have lasted only hours but is recurring during the whole year. One tail would
beHlzo(x) without the scanning activity, the otherHlzo(x) with the scanning
activity. Note that within the respective tail, the ratioH̃(x) vs. Hlzo(x) is quite
linear.

Figure 5.17: TCP: H̃(x) vs. Hlzo(x), source port, 2004

UDP: Source IP

The scatterplot for the source IP addresses can be found in Figure 5.19. It
shows a clear, almost straight line, with good concentration. The individual
quarters show no remarkable differences, so we omit them.

74 5 Entropy Estimation

Figure 5.18: TCP: H̃(x) vs. Hlzo(x), source port, 3rd quarter 2004

Figure 5.19: UDP: H̃(x) vs. Hlzo(x), source IP, 2004

UDP: Destination IP

The scatterplot for the destination IP addresses can be found in Figure 5.20.
As in the TCP case, it shows a “bulge” around coordinates (0.8, 0.4). Remark-

5.5 Discussion 75

ably this bulge is the only thing left in the fourth quarter (see Figure 5.21),
where the number of measurement intervals with good LZO compressibility
is low. This is due to a rise in UDP host scanning activity towards the end of
the year 2004.

Figure 5.20: UDP: H̃(x) vs. Hlzo(x), destination IP, 2004

5.5 Discussion

As the analysis by linear regression shows, entropy estimation by compres-
sion has a low relative error when applied to traffic source IP, source port and
destination port fields. This finding holds for TCP and UDP traffic. For the
destination IP field, however, there are significant errors,that do not follow
the correlation trend at all. Scatterplots of measurement times with low corre-
lation in the destination IP fields (Figures 5.6, 5.7, 5.12) show the reason for
the errors: The destination IP entropy measurements have very low variability
during low correlation times, as can be seen by the close grouping in the scat-
terplots. While both, sample entropy and entropy estimated by compression,
reflect the low variability, noise has a far stronger effect on the correlation co-
efficient in this configuration, than for periods of higher entropy variability.
Since we are primarily looking for larger entropy changes, this type of error
does not represent a strong concern for our work, but it may beproblematic in

76 5 Entropy Estimation

Figure 5.21: UDP: H̃(x) vs. Hlzo(x), destination IP, 4th quarter 2004

other applications. In Chapter 7 we will show that estimating entropy by com-
pression leads to results that are comparable to estimatingentropy by sample
entropy, when applied to our worm detector. The main difference is a slightly
higher number of false positives, when entropy is estimatedby compression.

Chapter 6

Entropy Based Worm
Detection

This chapter will present the actual detection mechanism. In a second step,
we will explain how a detector can be calibrated for a specificnetwork. Actual
detection results, validating the design, are given in Section 7 of Chapter 7.

The primary design goal for a worm detector, is of course, to detect
worms. Detection should be as early as possible, to allow more time for anal-
ysis and countermeasures. A second, just as important goal,is a low rate of
false positives, i.e. network events not caused by worms, that trigger the de-
tector. As it turns out, a worm detector based on entropy has to be calibrated
for a certain outbreak strength and the specific port profile of the worm. The
source port can be variable or fixed, and mainly depends on theworm imple-
mentation details. The destination port can be variable or fixed, depending on
the vulnerabilities(s) used to compromise target systems.

When calibrating our worm detector for a specific worm profile,param-
eters for the individual detection thresholds have to be estimated. We use a
procedure where worm traffic data with the desired trigger strength is inserted
into baseline traffic from the target network. In a second step the rate of false
positives is evaluated on a longer baseline traffic set without worm traffic in it.
Calibration can also be done with observation data from realworms, possibly
with modifications to the worm traffic. We use partial removalof the worm
traffic in order to evaluate detector sensitivity for a detector that has had its
sensitivity increased by dividing all thresholds by a factor larger than one.

78 6 Entropy Based Worm Detection

6.1 Detector Design

6.1.1 Approach

As discussed in detail in Chapter 4, the outbreak of a fast Internet worm
changes entropy characteristics of flow-level Internet traffic data. Typical
fields that exhibit changes are source and destination IP address fields and port
numbers. Since these fields are already sufficient to build a working detector,
we limit the design to them. Refinements that use additional metrics, such as
flow-counts per time, are discussed in Section 6.4.

For the actual detection, flow-level traffic data is first grouped into time
intervals. Typically, these are discrete intervals of fixedlength, e.g. 5 Min-
utes. The value sequence of the data field under consideration is then ex-
tracted and its entropy is estimated (see Chapter 5). The resulting time-series
of entropy values is used to determine a baseline by taking the average ofl
interval measurements directly before the current interval In. This average
is then compared with the value forIn. If the difference exceeds a specific
threshold and has the right sign (see Section 4.2.4), then for this data fieldIn
has a positive detection value. For a final decision, the other fields are evalu-
ated in the same fashion. If all data fields ofIn have a positive detection value,
then we have detected an outbreak event (or a false positive)in measurement
intervalIn.

Note that we have to build a separate detector for each different worm
behaviour profile. A worm profile is the set of signs of its characteristic en-
tropy changes during outbreak, relatively to the baseline entropy values. It
hence consists of four sign values, one for each IP address and one for each
port number. If, e.g., a worm has scan traffic with a fixed source port address,
it cannot be detected by a detector built for a worm with a variable source
address port, since in the first case the source address port field entropy de-
creases during the worm outbreak, while in the latter case, it increases.

A first refinement, that serves to reduce false positives, is to not only
require detection inIn, but ink consecutive detection intervalsIn−k+1, . . . , In.
In this case the baseline average is computed over the intervals In−k−l , . . . ,
In−k to avoid influence on the baseline by the already changed characteristics
of the current detection intervalsIn−k, . . . , In. With this refinement, we have
an overall positive detection at timen, if we have a positive detection for allk
consecutive intervalsIn−k+1, . . . , In. The advantage is a reduced rate of false
positives. The disadvantage is that detection latency is increased byk− 1
times the interval length. Note thatk may not be arbitrary long. It has to be

6.1 Detector Design 79

short enough that the worm scan activity is present to a sufficient degree in all
k intervals, otherwise fast worms that stop scanning after a short time will not
be detected. For a worm that finishes its spreading phase ink measurements
intervals and then stops scanning, ak′ detector withk′ > k may not detect the
worm outbreak at all. Typical values fork arek∈ {1,2,3}.

6.1.2 Design

Avg.

...

or

&
from other data features

Input data interval stream

H H H

In−1 In In−l . . .

Figure 6.1: Single interval detector

The dataflow for a single interval detector can be found in Figure 6.1. On
the top, left side, is the input data stream separated into intervals and reduced
to the traffic feature under observation. For our detector, the observed traffic
features are source IP address, destination IP address, source port number
and destination port number. The entropy of each interval isdetermined (by
an estimation procedure, see Chapter 5) and averaged over the baseline time
range, giving the feature baseline value at timen. The baseline value is then
compared to the value of the respective traffic feature in thecurrent interval
In and the difference (with sign) is fed into a threshold element. This element

80 6 Entropy Based Worm Detection

Avg. or

or

H H

Input data interval stream

...... &

from other data features

&

...H H...

In−k In In−k+1In−k−l . . .

Figure 6.2: Multiple interval detector

outputs a value of true, if the difference between current value and baseline
(with correct sign) exceeds the threshold set for the respective traffic feature.

The detection result for the traffic feature is then combinedwith the de-
tection results for the other traffic features by anANDoperation. If all are
positive, a worm scan detection event is detected in interval In. Figure 6.3
illustrates the approach using a plot of the per-interval entropy values.

The detector can be extended to ak interval detector, as shown in Figure
6.2. Here, an event for this traffic feature is detected if thedetection threshold
is exceeded in allk detection intervalsIn−k+1, . . . , In. A k interval detector for
k> 1 has a detection latency that is higher byk−1 times the interval length.
Its primary advantage is that it is less likely to produce false positives, since
any event that triggers it has to be present in allk detection intervals.

6.2 Calibration 81

Average

Measurement sequence

Measured value
E.g. H(source IP)

Time

Average done over l intervalls

Detection threshold

Figure 6.3: Single interval detector on data plot

6.2 Calibration

Calibration of the detector is necessary for the following reasons:

• Worm scan activity and hence traffic entropy characteristicchanges can
be arbitrarily low. Therefore it is not possible to define a definite maxi-
mum detector sensitivity. The sensitivity has to be selected so that both
the sensitivity level and the rate of false positives is appropriate for the
target network and intended purpose.

• Baseline traffic will be different from network to network. The likeli-
hood of false positives of a specific detector parametrisation has to be
evaluated for each network with its specific traffic mix.

Also, keep in mind that even if a specific worm or worm model is used
for calibration, the detector is not specific to it, but rather at least sensitive
enough to detect worms that generate scanning traffic of the same type with
the same or higher intensity. It is also quite possible to calibrate the detector

82 6 Entropy Based Worm Detection

on one worm model and then parametrise it to be more sensitiveby a specific
factor. If one detector is to be calibrated for several wormswith the same
entropy profile but different intensities, it is possible tocalibrate it on each
worm individually and then choose the most sensitive value found for each
parameter.

Of course choosing threshold values without adjusting themto a specific
worm model is also possible. In this case the sensitivity will have to be eval-
uated on one or several worm models.

Assuming that a measurement interval length has been selected, the pa-
rameters to be determined and tuned in order for the detectorto work well are
the following:

1. The thresholds in the individual threshold discriminators working on
the different input fields

2. The sign for each thresholds

3. The number of intervals to be used for baseline generation

The baseline period length parameter is the easiest in our experience. A
value of one hour seems to work well. If, however, at the end ofthe calibra-
tion process, the rate of false positives is not acceptable,longer and shorter
baseline periods can be examined as alternatives. Especially if a relatively
slow worm needs to be detected, a significantly longer baseline period may
be needed.

In order to determine the threshold values and signs, worm models are
needed. For TCP the typical situation is that the source portwill be variable
and hence source port entropy will increase during a worm outbreak. Fixed
source ports are possible though, if the worm designer does not use the OS
network stack, leading to a decrease of source port field entropy during the
outbreak. Destination port field characteristics depend onthe vulnerability
exploited. Typically the destination port will be fixed for TCP, since data
transfer (needed to transport exploit code) with TCP requires a successful
handshake. This in turn requires an open TCP port, which willhave a specific
port number. The IP address fields have a specific behaviour, that would be
very hard or infeasible to change, see Chapter 4.

For UDP worms, the situation is more complicated. Any combination
of port field entropy is possible. Still, the IP address fieldsentropy has one
specific behaviour, as discussed in Chapter 4.

6.2 Calibration 83

Once a worm model is determined, a mix of base traffic and worm out-
break traffic is needed. An ideal solution is of course real traffic that was
recorded during an actual worm outbreak. Worm models and a possible ap-
proach to worm traffic synthesis are discussed in Section 3.7of this thesis. Of
course baseline traffic can be synthetic as well, but we expect that obtaining
realistic baseline traffic by simulation may be actually thesame or more effort
than doing traffic measurements.

With this traffic, the thresholds are adjusted so that each one forms a sharp
detector. This can be done, e.g., by determining the exact minimal absolute
threshold for timely detection and then relaxing the value by, e.g., 5%. (See
Section 7, for a discussion of the effect of relaxing the thresholds.) After this,
a significant amount of base-traffic without worm outbreaks in it is needed.
On this the rate of false positives is determined by feeding it to the detector. If
the rate is unacceptable, the parameters can be refined or additional measures
can be implemented to make the detector more discriminating. See Section
6.4 for a discussion of several possibilities.

The calibration process needs the following steps:

1. Get real traffic observations for your network

2. Get worm observations for your network or define syntheticworm
models. These supply the signs for the individual thresholdvalues.

3. If your worm traffic is defined only by a model, generate wormtraf-
fic and insert the individual flows into a section of baseline traffic at
random positions.

4. Determine tight individual thresholds for timely detection.

5. Divide the thresholds by a factor in order to increase the sensitivity. The
sensitivity level of a parameter setting is given by the division factor.
The tight threshold settings have a sensitivity level of 1.0.

6. Determine the number of detection intervals, if a multi-interval detector
is to be used.

7. Determine the rate of false positives on a large section ofbaseline traffic
without worm propagation events.

8. If the rate of false positives is unacceptable, reconsider the worm
model, as well as, steps (5) and (6) and try variations of the baseline
length. Further possibilities can be found in Section 6.4.

84 6 Entropy Based Worm Detection

If several worm models are used, the calibration process should be used
for each one. It is possible to either build a single detectorthat uses the
minimal absolute threshold of individual detectors, or to build all individual
detectors and combine their individual outputs.

6.2.1 Calibration Example

As an example, we will use the Blaster worm, see also Section 7.2.1 and Sec-
tion 7.4. Blaster uses TCP for its initial contact to the target, and therefore
has to use its real source IP address in the traffic. Hence the source address
field in all scan traffic from each individual infected host will be fixed. This
means, that the worm scan traffic decreases the source IP address field en-
tropy and the threshold sign is negative. Every scanning worm has to use
a variable target IP address, otherwise the attack traffic would not reach the
target. The effect is that the target IP address field entropyis increased by the
scan traffic, and hence the detection threshold sign is positive. Blaster uses a
vulnerability in port 135/TCP on the target system, i.e. thetarget port number
in its scan traffic is fixed. As a consequence, the target port number entropy
is lower, compared to normal traffic, leading to a negative sign for the target
port number detection threshold. Source port numbers in Blaster scan traffic
are variable and increase source port number entropy, resulting in a positive
threshold sign for the source port number field. Table 6.1 shows the result-
ing worm profile. With this profile and measurement data from the SWITCH
network, we obtain the set of detection thresholds shown in Table 6.2. This
concludes initial calibration of the detector for a tight fitto the worm.

The detector sensitivity can then be increased by dividing the values in
Table 6.2 by a value larger than one or decreased by dividing them by a value
between zero and one. As a next step, the now parametrised detector should
be run on a set of baseline data to determine the number of false positives it
generates. If the result is unacceptable, variations of theparametrisation can
be tried or the detection interval numberk can be increased.

source destination source destination
IP IP port port

- + + -

Table 6.1: Blaster worm profile. “+” means entropy exceeds baseline during
outbreak, “-” means entropy decreases below baseline during outbreak.

6.2 Calibration 85

Sensitivity source destination source destination
IP IP port port

tight (1.0) -0.06 +0.05 +0.062 -0.16

Table 6.2: Detection thresholds for Blaster

6.2.2 Risks of Synthetic Data

While generating synthetic worm traffic is not a major problem(see Chapter
3), synthesising realistic baseline traffic is a hard problem. The specific dif-
ficulties for the problem of worm detector calibration lie inthe fact that the
baseline is needed in order to evaluate the rate of false positives for a spe-
cific detector parametrisation. Since false positives are typically caused by
anomalies, such as conventional scanning, (D)DoS attacks and the like, false
positives are caused by anomalies themselves. Synthesising traffic with a re-
alistic anomaly profile is infeasible without determining this anomaly profile
on the target network first. This in turn needs real traffic observations. We
expect that generating realistic synthesised baseline traffic is actually signifi-
cantly harder than recording real traffic in the first place. In addition, it very
likely needs knowledge of the specific parametrisation of the detector that is
to be calibrated using it, which leads to a circular dependency.

An alternative to using synthesised baseline traffic can be to use baseline
traffic from a different network and to adapt it to the specificnetwork con-
ditions of the target network. For global anomalies it should be feasible to
obtain a realistic baseline in this way. For local anomalies, that are specific to
the target network, this process is however likely to remainunsatisfactory.

6.2.3 Reducing False Positives

One approach to reducing false positives is to use counter-indicators. For ex-
ample, if entropy metrics indicate massive scanning activity, but the number
of traffic targets in the local network does not increase, this indicates an at-
tacker that already knows which hosts are reachable in the local network. In
this case the source of the anomaly may still be a worm, however not one
with random scanning, but rather one with a precomputed hitlist (see Section
3.4.3). Additional parameters of this nature can be used to generate counter-
indicators with mostly the same detection mechanism as presented in this

86 6 Entropy Based Worm Detection

chapter. In the presence of a counter indicator, the original positive detection
is either suppressed or reported in a modified form that indicates it may be a
false positive.

A second application is to generate counter-indicators forknown anoma-
lies. The idea is that the presence of a positive counter-indicator value inval-
idates a positive detection result. For example, if there are (D)DoS attacks
against the local network from a specific source IP range or with specific traf-
fic characteristics, this can be detected separately and used to suppress worm
detection that triggers on the (D)DoS traffic.

Of course there is the risk of attackers using cover traffic, e.g. by con-
ducting repeated (D)DoS attacks against a network, and thenexecuting low-
intensity attacks in parallel. However, since this exampleis not a global
anomaly, but a targeted attack against a specific network, itis outside of the
focus of this work and better addressed by standard IDS and IPS mechanisms.

6.3 Scalability

6.3.1 Larger Networks

For larger networks, the detector generally benefits from lower noise, and
hence from lower numbers of false positives. As a downside, estimating the
entropy of the individual traffic flow fields becomes computationally more
expensive. If entropy is estimated by compression, as discussed in Chapter
5, the computational effort increases linearly with the size of the input, while
memory consumption remains constant. If sample entropy is used, the com-
putational effort also increases linearly with the input size, while the memory
need increases linearly with the number of different valuesseen in a measure-
ment interval.

We believe that with estimation by compression, our detection approach
remains feasible and relatively cheap to implement, as longas the problem
of importing the raw flow data into computer memory is possible. If the flow
data can no longer be imported in real-time, then a flow based approach fails
or is degraded to a post-mortem analysis function. Still, for this situation it is
possible to work with a randomly selected subset of the exported data or to do
entropy estimation for different subsets of the flow data on different machines
and average the results.

6.4 Refinements 87

6.3.2 Smaller Networks

The problem with smaller networks is that the observed traffic data has a
larger noise component, since small events, such as a download to an indi-
vidual computer, can have a significant impact on the overalltraffic charac-
teristics. We expect that our detection approach will produce an unacceptable
number of false positives for small networks. Since it is nottargeted at this
type of scenario, we feel that this is not a drawback.

6.4 Refinements

It is possible to improve on the basic detector design presented in this chapter.
Improvements may, for example, be desirable in order to obtain more specific
detection results or to reduce detection latency.

6.4.1 More Specific Detection Results

A primary approach is to run several instances of the detector with different
parametrisation, e.g. more sensitive and less sensitive ones. More sensitive
ones can already react to lower-intensity scanning and can be used to gener-
ate a pre-warning. Another possible variation is to run several multi-interval
detectors with different detection interval numbers. Withthis it becomes pos-
sible to distinguish between short, high-insensitivity scanning activity and
worm-scan activity. The worm-scan activity will typicallypersist over sev-
eral measurement intervals, while high-intensity scanning for other purposes
often stops again after a few minutes.

6.4.2 Reducing Detection Latency

The primary means of reducing detection latency with single-interval detec-
tors is to use a sliding observation window, i.e. a detectioninterval that is
moved by a fraction of the interval length for each detectionstep. On average
this can reduce detection latency by up to half the interval length.

When using multi-interval detectors, it is possible to use more sensitive
parametrisation in the earlier detection intervals. This can have significant
benefits for slower spreading worms, but increases the rate of false positives.

Chapter 7

Detector Validation

The purpose of this chapter is twofold: First, we will show that the detector
design from Chapter 6 performs well on real-world network data. Second,
we will demonstrate that estimating entropy by compressioninstead of by
sample entropy is a valid alternative, by providing detection results both for a
detector using sample entropy and for one using compression.

An additional validation possibility is the use of simulated traffic. We will
discuss this possibility briefly in Section 7.7

7.1 Validation Basis Data

All measurements are done on real data from the SWITCH network, see Ap-
pendix C. The validation data spans the first six months of 2004. In order
to reduce the data to a manageable size, we only use the data exported by
the swiCE1 and swiCE2 routers. This represents about half the number of
flows seen on the SWITCH network border routers. A second reason for the
reduction is that the flow export engine of the third border router, swiIX1 ,
was partially overloaded at the time the validation data wasrecorded, which
introduced additional noise and flow-loss, especially at high-load times, such
as worm outbreaks and DoS attacks. Depending on the detectorparametrisa-
tion, this can cause both a higher and a lower number of false positives and
would generally have led to unrealistic measurements.

In the following, we evaluate detector characteristics on the Blaster and
Witty worm outbreak. For the Blaster worm detection measurements, we use

90 7 Detector Validation

an additional 3.5 day long data interval from 2003 that contains the initial
Blaster outbreak. All measurements are done first with tightthresholds and
then with increased sensitivity by dividing the thresholdsall by the same fac-
tor.

7.2 Worms Used for Validation

7.2.1 The Blaster Worm

We are considering the first observed variant, Blaster.A. For brevity we will
refer to it as “Blaster”. Blaster had its initial outbreak onAugust 11, 2003,
approximately between 16:30 UTC and 17:00 UTC. The initially infected
population was in excess of 150.000 hosts, according to the Internet Storm
Center [10]. Saturation (i.e. 90% of the reachable and vulnerable popula-
tion is infected) was reached after approximately 8 hours. Blaster targeted a
vulnerability in the Microsoft RPC mechanism, accessible via Port 135/TCP.
A detailed analysis of the Blaster worm and its infection mechanism can be
found in [37].

7.2.2 The Witty Worm

We use the Witty worm [90, 104], first observed on March 20th, 2004, as a
second example. Witty attacks a specific firewall product. Itsends attack
datagrams to random addresses with afixed source port of 4000/UDP and
variable destination port. The firewall product is then compromised while
inspecting the datagram. While the attack payload is less than 700 bytes in
size, it is padded to a total, random size between 796 and 1307bytes for
each datagram sent. No additional communication is needed to complete the
infection.

Witty infected only about 15’000 hosts, but was clearly visible in the
UDP entropy statistics. While there is far less UDP traffic than TCP traffic
in the Internet, UDP traffic is aggregated to a lower degree inthe SWITCH
routers and there are almost as many UDP flows exported as TCP flows. The
Witty worm analysis by CAIDA [90, 93] places the initial Witty outbreak at
8:45:18pm PST on March 19 (i.e. 4:45:18 UTC on March 20), 2004, which
is the most precise outbreak time we were able to find in the literature.

One notable characteristic of Witty is that it was very competently de-
signed [115]. In fact, analysis of the worm code did not reveal any imple-

7.3 Quality Measures 91

mentation weaknesses, contrary to many other worms. The other notable
characteristic of the Witty worm is that it managed to reach saturation within
about 15 minutes, despite the low number of vulnerable hosts. Before the
Witty outbreak, it was not known whether a comparably short time to satu-
ration was feasible for such a small number of vulnerable hosts and whilst
using a random scanning strategy.

7.3 Quality Measures

We use several different metrics for measuring the actual result quality of a
worm detector. These are detection delay, false negatives and false positives.
Detection delay is the period of time after worm propagationtraffic becomes
visible until the worm is detected. False negatives describe which outbreaks
are not detected. False positives describe which, and how many, other non-
worm anomalies are misclassified as worm outbreaks.

Detection Delay

With our detector, the detection delay depends on the measurement interval
length. We have to gather data for a specific time and then process it to de-
termine whether a worm outbreak event was visible during this measurement
data interval. For our detector, this can only be done at the end of each mea-
surement interval. In addition, the anomaly has to habe enough impact during
a measurement interval in order to be detected in it. If, for example, a worm
outbreak shows up weakly at the end of a measurement intervaland not at all
before the interval, then it will likely only be detected during the next mea-
surement interval. If multi-interval detection is used, the overall observation
time becomes the effective measurement interval. As optimisation, the basis
interval can be shifted in an overlapping fashion to reduce detection latency.

False Negatives

A false negative is a serious problem. It basically means that an event, which
should have been detected, was not detected at all. For our work, this is diffi-
cult to define. Since we do not consider slow worms, failure todetect a slow
worm is not a false negative. In order to generate a false negative with our de-
tector design, a worm would need to increase scanning activity very slowly,
so that it becomes part of the baseline. However, this would automatically

92 7 Detector Validation

make the worm a slow worm. Still, if the detector is parametrised with very
high detection thresholds, it is quite possible to miss outbreaks of fast worms.
As in Chapter 6, we call the highest thresholds, that still lead to reliable de-
tection of a worm, a set oftight thresholds. If they are exceeded in a detector
parametrisation, the worm will not be detected at all or onlylater. False neg-
atives can also be generated by choosing a very short baseline period, then
the effects of the worm outbreak can become part of the baseline before the
detection thresholds are exceeded.

It is quite feasible and very efficient to run several differently parametrised
detectors in parallel, and then observe their different detection results. Rather
than seeing the differences as a problem, we suggest that they actually rep-
resent a pre-classification of the observed worm outbreak event into different
intensity classes.

False Positives

False positives are not directly a problem. What makes them problematic
is that they can overwhelm the second stage detection system, i.e. the sys-
tem tasked with analysing alerts, as well as, selection and implementation of
countermeasures. Today, the second stage is typically implemented by man-
ual analysis. This approach does not scale well, and gettingadditional experts
to perform the analysis is expensive and difficult. Therefore a high number of
false positives can result in a DoS-like attack on the overall detection mech-
anism. In fact, in current IDS systems, false positives are one of the primary
and often unsolved challenges.

In our scenario, detection quality increases when more detection intervals
are used (as long as the detection interval length is kept constant). It is possi-
ble to continue detection with additional intervals after initial alerting and to
de-alert the user. This makes some false positives transient. Also, depending
on the specific network protection requirements, alerts from our worm detec-
tor can be combined with other measurements, e.g. network stability indica-
tors. This provides the possibility to restrict fast (and less reliable) alerting to
situations where network stability is potentially impacted. If network stabil-
ity is not impacted, detection can then be done with longer delay (by using a
multi-interval detector) and lower probability of false positives.

7.4 Validation Results for the Blaster Worm 93

7.4 Validation Results for the Blaster Worm

Figures 7.1 and 7.2 show the entropy profiles during the Blaster worm out-
break, for sample entropy (top) and entropy estimated by LZOcompression
(bottom). The detector signal is shown for tight thresholds(see Section 6.2).

source destination source destination
IP IP port port

Sample entropy -0.06 +0.05 +0.062 -0.16

Compression -0.08 +0.033 +0.06 -0.17

Table 7.1: Blaster: Tight detection thresholds

We calibrated one detector using sample entropy and one using compres-
sion on the real Blaster outbreak using the procedure described in Section
6.2. The resulting tight detection thresholds are given in Table 7.1. The de-
tectors were then run on the DDoSVax TCP data for the first halfof 2004.
The basis measurement interval was 5 minutes in all cases. The baseline was
determined over one hour, i.e. 12 measurement intervals. Measurements were
taken only on flows entering the SWITCH network, since the hostpopulation
within the SWITCH network is small enough to cause significantnoise, and
local events have a significant impact on the characteristics of flows leaving
the SWITCH network.

To determine the dependency of false positives on the numberof detection
intervals in a multi-interval detector, measurements weretaken with one, two
and three detection intervals. Note that the number of detection intervals
corresponds tok in Section 6.1 and in Figure 6.2. We use the simple multi-
interval approach, where all detection intervals use the same thresholds. To
determine the impact of more sensitive detection thresholds on false positives,
the tight detection thresholds were divided by a factor and the measurements
were then repeated. For Blaster, the factors 1.4 and 2.0 wereused.

Since entropy is a combined additive and logarithmic measure, dividing
a threshold by a factor ofq can reduce the number of flows needed to trig-
ger the detector by a factor significantly different fromq. The actual effect
depends on the concrete traffic mix. Table 7.3 lists the effects of increasing
sensitivity for the Blaster worm as observed in the SWITCH data. The effect
was determined experimentally by randomly removing a specific number of
Blaster flows until detection failed.

94 7 Detector Validation

10.08.
00:00

10.08.
12:00

11.08.
00:00

11.08.
12:00

12.08.
00:00

12.08.
12:00

13.08.
00:00

13.08.
12:00

S
am

pl
e

en
tr

op
y,

 e
ac

h
ra

ng
e

=
 [0

,1
]

date (2003)

outbreak timesource IP

destination IP

source port

destination port

Example detector output
(sensitivity 1.0, one interval)

10.08.
00:00

10.08.
12:00

11.08.
00:00

11.08.
12:00

12.08.
00:00

12.08.
12:00

13.08.
00:00

13.08.
12:00

C
om

pr
es

si
on

, e
ac

h
ra

ng
e

=
 [0

,1
]

date (2003)

outbreak timesource IP

destination IP

source port

destination port

Example detector output
(sensitivity 1.0, one interval)

Figure 7.1: Blaster worm: Sample entropy (top) and compression (bottom)

7.4 Validation Results for the Blaster Worm 95

15:00 16:00 17:00 18:00

S
am

pl
e

en
tr

op
y,

 e
ac

h
ra

ng
e

=
 [0

.2
5,

0.
75

]

date (11.08.2003)

outbreak time

source IP

destination IP

15:00 16:00 17:00 18:00

S
am

pl
e

en
tr

op
y,

 e
ac

h
ra

ng
e

=
 [0

,1
]

date (11.08.2003)

outbreak time

source port

destination port

15:00 16:00 17:00 18:00

C
om

pr
es

si
on

, e
ac

h
ra

ng
e

=
 [0

,1
]

date (11.08.2003)

outbreak time

source IP

destination IP

15:00 16:00 17:00 18:00

C
om

pr
es

si
on

, e
ac

h
ra

ng
e

=
 [0

,1
]

date (11.08.2003)

outbreak time

source port

destination port

Figure 7.2: Magnification of Figure 7.1 around outbreak time

96 7 Detector Validation

0.0 * 10^0

2.0 * 10^5

4.0 * 10^5

6.0 * 10^5

8.0 * 10^5

1.0 * 10^6

11.08.
12:00

11.08.
14:00

11.08.
16:00

11.08.
18:00

11.08.
20:00

11.08.
22:00

Date and Time (UTC, 2003)

suspected outbreak time (16:35)

 exceeds previous maximum (17:00)

flows to 135/TCP per 5 min

Figure 7.3: Blaster worm: Flows to port 135 TCP

Sensitivity Sample entropy Compression

Intervals Intervals
1 2 3 1 2 3

tight 3 (0) 0 (0) 0 (0) 6 (0) 0 (0) 0 (0)
1.4 23 (1) 13 (1) 3 (0) 24 (1) 10 (1) 4 (1)
2.0 55 (14) 32 (3) 9 (2) 50 (8) 26 (2) 9 (1)

Table 7.2: Blaster: False positives vs. threshold tightness

Sensitivity Blaster flow count
Sample entropy Compression

1.4 0.739 0.740
2.0 0.596 0.600

Table 7.3: Blaster: Sensitivity vs. reduction in number of Blaster flows
needed to trigger the detector

Our detector found the Blaster outbreak first in the measurement inter-
val starting at 17:03 UTC on August 11th, 2003. More sensitive threshold
settings did not result in earlier detection. While the exactBlaster outbreak
time is unknown, the earliest time the Blaster outbreak may have been vis-
ible in the SWITCH traffic was around 16:35, when a slight increase in the

7.5 Validation Results for the Witty Worm 97

connection attempts to port 135/TCP could be noticed [37]. The first time
the number of flows to port 135/TCP exceeded the peak number offlows to
port 135/TCP in the 5 hours before the outbreak, was at 17:00 UTC, as can
be seen in the traffic plot in Figure 7.3. The first successful infection of a host
in the SWITCH network was at 17:42 UTC [37].

False Positives

The numbers of false positives during the six month reference data interval
are listed in Table 7.2. Closer inspection of the false positives revealed that
a large number was due to burst scan activity on several days in the second
half of June 2004. The scan activity caused false positives with both entropy
estimation methods used. The numbers in brackets in Table 7.2 represent the
number of false positives without this specific scan activity.

The burst scans in June 2004 were all done at 5:25 UTC, 7:15 UTC, and
with lesser intensity at 8:40 UTC. They lasted for up to an hour with bursts
between 5 and 10 minutes long. The number of overall network flows per 5
minute interval entering the SWITCH network during the scans, was up to
4.5 times higher than observed directly before and after theanomaly. Closer
inspection revealed that during these intervals a large number of flows was
sent from a relatively small number of hosts to a large fraction of the SWITCH
IP range, suggesting a targeted, combined host and port scanon the SWITCH
host population.

7.5 Validation Results for the Witty Worm

In order to determine detection characteristics for an UDP based worm, we
used the procedure in Section 6.2 to determine tight thresholds for the real
Witty worm outbreak in the DDoSVax dataset. Again, we determined a set
of parameters for a detector that uses sample entropy and forone that uses
compression. The reference data set was the same as for the Blaster worm,
but restricted to UDP data. As with Blaster, only flows entering the SWITCH
network were used. Since the Witty worm outbreak occured within the first
half of 2004, we initially used a lock-out time of 6 hours before and after
the known outbreak time and detections within this time werenot counted as
false positives. As it turned out that there were no false positives within the
lockout time period, no effort has been made to optimise it. Figures 7.4 and
7.5 show the UDP traffic entropy profiles during the Witty wormoutbreak for

98 7 Detector Validation

sample entropy (top) and entropy estimated by LZO compression (bottom).
The detector output plot is for the tight detection thresholds given in Table
7.4.

source destination source destination
IP IP port port

Sample entropy -0.016 +0.061 -0.082 +0.21

Compression -0.037 +0.091 -0.085 +0.20

Table 7.4: Witty: Tight detection thresholds

Sensitivity Sample entropy Compression

Intervals Intervals
1 2 3 1 2 3

tight 0 0 0 0 0 0
1.4 0 0 0 0 0 0
2.0 0 0 0 0 0 0
3.0 0 0 0 0 0 0
4.0 0 0 0 1 1 1
6.0 1 1 1 3 3 2
8.0 7 1 1 4 3 2

Table 7.5: Witty: False positives vs. threshold tightness

The earliest time that we were able to detect the Witty worm bychanges in
the UDP traffic entropy profile was during the measurement interval starting
at 4:45:00 UTC on March 20, 2004. This is consistent with observations
by CAIDA [90, 93] that places the initial outbreak at 4:45:18on the same
day. Similar to the Blaster worm, increasing sensitivity did not lead to earlier
detection and our detection time of 4:50 (end of the measurement interval)
represents the best possible detection latency our detector can achieve with
the given measurement interval length.

For the Witty worm, Table 7.5 gives false positive counts andthe im-
pact of increasing sensitivity (left side) and using multi-interval detection (top
row). It can be seen that an increase of sensitivity by a factor of at least 6.0 (for
sample entropy) and at least 4.0 (for LZO compression estimated entropy) is

7.6 Discussion 99

Sensitivity Witty flow count
Sample entropy Compression

1.4 0.739 0.738
2.0 0.598 0.638
3.0 0.483 0.515
4.0 0.423 0.459
6.0 0.360 0.400
8.0 0.332 0.367

Table 7.6: Witty: Sensitivity vs. reduction in number of Blaster flows needed
to trigger the detector

needed to produce any false positives. The improvement in the number of
false positives when using multi-interval detection is relatively small for the
range of intervals we used.

7.5.1 Validation Results for a Modified Witty Worm

Because of the special port characteristics of the Witty worm, namely a fixed
source port and a variable destination port, we did an additional detection run
on the reference interval with the port characteristics reversed, i.e. a vari-
able source port and a fixed destination port. This simulatesa variant of the
Witty worm that uses a variable source port and a fixed destination port, i.e.
the typical port characteristic of a worm that attacks a service running on a
specific port. The detection thresholds were the same as for the unmodified
Witty worm.

The detection results are listed in Table 7.7. It can be seen that for sample
entropy a sensitivity increase of 4.0 is needed to produce any false positives.
The results for compression are similar, but a bit worse, with the first false
positives occurring at a sensitivity of 3.0. Using multi-interval detection is
very effective in reducing false positives for both entropyestimation methods.

7.6 Discussion

We have demonstrated the validity of our detector design on two well-un-
derstood fast Internet worms using a significant amount of real traffic data

100 7 Detector Validation

18.03.
00:00

18.03.
12:00

19.03.
00:00

19.03.
12:00

20.03.
00:00

20.03.
12:00

21.03.
00:00

21.03.
12:00

22.03.
00:00

S
am

pl
e

en
tr

op
y,

 e
ac

h
ra

ng
e

=
 [0

,1
]

date (2004)

outbreak time

source IP

destination IP

source port

destination port

Example detector output
(sensitivity 1.0, 1 interval)

18.03.
00:00

18.03.
12:00

19.03.
00:00

19.03.
12:00

20.03.
00:00

20.03.
12:00

21.03.
00:00

21.03.
12:00

22.03.
00:00

C
om

pr
es

si
on

, e
ac

h
ra

ng
e

=
 [0

,1
]

date (2004)

outbreak timesource IP

destination IP

source port

destination port

Example detector output
(sensitivity 1.0, 1 interval)

Figure 7.4: Witty worm: Sample entropy (top) and compression (bottom)

7.6 Discussion 101

03:00 04:00 05:00 06:00 07:00

S
am

pl
e

en
tr

op
y,

 e
ac

h
ra

ng
e

=
 [0

.2
5,

0.
75

]

date (20.03.2004)

outbreak time

source IP

destination IP

03:00 04:00 05:00 06:00 07:00

S
am

pl
e

en
tr

op
y,

 e
ac

h
ra

ng
e

=
 [0

,1
]

date (20.03.2004)

outbreak time

source port

destination port

03:00 04:00 05:00 06:00 07:00

C
om

pr
es

si
on

, e
ac

h
ra

ng
e

=
 [0

,1
]

date (20.03.2004)

outbreak time

source IP

destination IP

03:00 04:00 05:00 06:00 07:00

C
om

pr
es

si
on

, e
ac

h
ra

ng
e

=
 [0

,1
]

date (20.03.2004)

outbreak time

source port

destination port

Figure 7.5: Magnification of Figure 7.4 around outbreak time

102 7 Detector Validation

Sensitivity Sample entropy Compression

Intervals Intervals
1 2 3 1 2 3

tight 0 0 0 0 0 0
1.4 0 0 0 0 0 0
2.0 0 0 0 0 0 0
3.0 0 0 0 25 2 0
4.0 1 0 0 114 14 1

Table 7.7: Modified Witty: False positives vs. threshold tightness

from the SWITCH network. False positives were evaluated on half a year of
SWITCH network traffic data, giving realistic measurements that also include
rarer network events. The numbers of false positives found were low and can
be reduced further with multi-interval detection. This demonstrates that the
detector design is capable of working well with real networkdata. We also
measured the effects of increasing detector sensitivity bydividing all thresh-
olds by the same factor and demonstrated that this approach to sensitivity
adjustment is valid.

In addition, we determined the number of false positives fora detector
parametrisation for a hypothetical Witty worm variant withinverse port char-
acteristics. The results demonstrate that the good detection results for the
Witty worm are not due to its particular port profile.

Detection Quality

For both worms, detection latency is low. For the Blaster worm, we have
detection in the first interval where the number of flows to port 135/TCP (the
Blaster scan target port) exceeds the number of flows to this port during the
time period shortly before. This result can be seen as optimal for a traffic-
mix based approach such as ours. In the case of the Witty worm we have
detection in the first measurement interval that contains the time of the actual
Witty worm outbreak. This is optimal.

With regard to false positives, we see no or very low numbers of false pos-
itives for tight thresholds. When sensitivity is increased,the false positives for
the Blaster worm increase relatively fast for single interval detection. Multi-
interval detection behaves significantly better under increased sensitivity. For

7.6 Discussion 103

the original and modified Witty worm, the observed numbers are excellent,
even with increased sensitivity. This difference is due to the stronger changes
Witty caused in the traffic entropy profile, because of its more aggressive
scanning strategy and hence higher spreading speed. Not surprisingly, slower
worms may take longer to detect reliably.

The detector for the modified Witty worm had moderately worsecharac-
teristics than the one for the original Witty worm, namely a higher number of
false positives. The likely explanation is that the port profile of scan traffic
for the modified Witty worm closely resembles common port scans. These
can then trigger the modified Witty detector if its sensitivity is high enough.

Sample Entropy vs. Entropy Estimated by Compression

For the Blaster measurements, the detection results obtained with sample en-
tropy and with entropy estimated by LZO compression are verysimilar. One
difference is that the LZO based detector at sensitivity level 1.0 is a bit more
sensitive to one specific, repeated high-intensity scanning activity at the end
of the validation data interval. We have stated the observednumbers of false
positives with and without this specific scanning activity.

For the Witty worm, the number of false positives are moderately worse
for LZO estimated entropy than for sample entropy. In addition, decreasing
detection thresholds has a weaker effect with LZO compression, i.e. for a
specific sensitivity, LZO compression based detection actually needs more
Witty flows than sample entropy based detection. However, inboth cases
the results are very good and a significant increase in sensitivity is needed to
produce any false positives at all for the half year of reference traffic data.
The same effects can be observed for the modified Witty worm. Here again,
the sample entropy based detector performs better.

The results obtained demonstrate that LZO compression forms a valid
alternative to sample entropy when estimating flow-stream entropy profile
changes. Since LZO compression offers a moderate speed improvement and a
smaller memory footprint (see Section 5.3) in comparison tosample entropy,
using LZO compression can have significant benefits in practical implemen-
tations.

104 7 Detector Validation

Increasing Sensitivity

Increasing detector sensitivity increases the likelihoodof false positives. We
utilised division of the detection thresholds by constant factors in our mea-
surements, i.e. the same decrease in the individual detection threshold values.
An alternative strategy is to calibrate the detector on a worm outbreak event of
smaller magnitude. This could potentially increase detection quality and can
be used for applications where a simple constant factor sensitivity increase is
not good enough. The better result quality comes at the priceof higher effort,
since the measured or simulated worm traffic data has to be changed.

7.7 Simulation as a Validation Tool

Using synthesised data or simulation to validate an anomalydetector is prob-
lematic. An example of a dataset that may have contributed tothe develop-
ment of IDS systems that have trouble dealing with real traffic data because
of its, among other things, failure to provide a realistic baseline, is the MIT’s
Lincoln Lab data from 1998 [64,70].

If simulation is used to validate a worm detector design, twoaspects are
critical:

• The worm traffic must be simulated realistically

• The baseline traffic must be simulated realistically

Simulating worm traffic is not too difficult, if a realistic worm model and
a realistic Internet model are available. We present one possible approach in
Chapter 3.

Simulating realistic baseline traffic for the evaluation offalse positives
is harder. One possible approach [18] that is currently being investigated, is
to identify traffic features of real traffic and then to re-synthesise this traf-
fic with similar characteristics. This however still needs real traffic with the
desired characteristics, which is a significant drawback, since the real traffic
data could be used directly for validation with less effort and more accurate
results. At the same time, it is currently unknown if the re-synthesised traffic
will have realistic characteristics with regard to false positives in a worm de-
tector. The main motivation for this research activity is therefore not to allow
simulation but to provide anonymisation of a network flow dataset, in order
to deal with privacy restrictions.

7.7 Simulation as a Validation Tool 105

Whether simulation of a realistic baseline is feasible without using a set of
real traffic observations as a basis, is currently unknown. If it were feasible,
the simulation results would still need to be compared to results obtained with
real traffic to demonstrate that they are realistic. Otherwise there is a real
possibility that simulations will provide results the experimenter expected or
desired, rather than meaningful ones. This again means realtraffic data has
to be available and the simulation is, again, not really needed and the second
best choice. For these reasons, we are convinced that at thistime there is
no adequate substitute for testing backbone worm detectorson real baseline
traffic.

Chapter 8

Conclusion

We have identified traffic entropy changes present during thepropagation
phase of fast Internet worms. The changes were analysed theoretically and
measured on real traffic from a high-volume network. The insights gained
have been used to build a real-time capable detector for fastInternet worms
that has low detection latency, a low rate of false positivesand low resource
needs. The detector scales well and is suitable for real-time online use on
very fast networks. Validation of the detector design has been done using an
extensive set of real Internet backbone flow-level traffic data.

8.1 Review of Contributions

Design, build and operate a NetFlow data capturing system for the
SWITCH network (Engineering)

Since no NetFlow data capturing, transport and storage software suitable for
the purpose of of this work was available, we designed and implemented a
suitable system. The capturing system handles all tasks involving capturing
of the NetFlow UDP datagrams streams to file, compression andtransport to
long-term storage. Significant effort is spent on fault tolerant operation and
automatic recovery in case of errors and system outages. A problem with
packet loss in the UDP datagram stream, due to very fast data export bursts
and too small socket buffers in intermediate hosts replicating the datagram
stream, was analysed and solved as well.

108 8 Conclusion

The capturing system has been operational without major outages since
the beginning of 2003 and is still perfectly adequate to the task. In Oc-
tober 2007 the total amount of data captured and stored was about 30TB
compressed (an estimated 90TB uncompressed with thebzip2 compres-
sion used), which corresponds to roughly 1’800 billion individual NetFlow
records, captured over a time of approximately 41’000 hours. The capturing
system is described in Appendix C and in [107,111].

Design and implement NetFlow data processing libraries andtools
(Engineering)

At the beginning of this work, the available toolsets and libraries for handling
NetFlow data were not suitable for processing large amountsof data or had
a primary focus on forensics. Forensics is generally not concerned with the
overall picture, but focuses on a small number of specific flows instead. Anal-
ysis with forensic tools is typically done interactively bya human operator.

The DDoSVax project and this thesis are specifically not targeted at foren-
sic work, since that would violate agreements with the traffic data source used
(SWITCH) and could violate Swiss privacy laws. As a consequence we cre-
ated a NetFlow data toolset and associated libraries, suitable for batch pro-
cessing of very large datasets with a focus on more abstract traffic properties.
It forms the basis of all NetFlow processing work done in thisthesis and has
proven to be perfectly adequate to the task. It is suitable for large scale analy-
sis as, for example, the validation work done in Chapter 7 shows, where half
a year of traffic data was processed at a time.

The toolset is described in detail in Appendix A. It has also been used in
other research activities, for example [20]. A public release as Free Software
is in preparation.

One component of the toolset, namely the transparent compressed file
reader librarycfiletools , has been added to RIPE [1] RIS raw data toolset
libbgbdump , adding support forbzip2 compressed BGP data files.

Create a worm simulator to better understand worm characteristics
(Engineering / Science)

In order to understand what limits propagation speeds of fast Internet worms,
we saw a need for a simulator that could realistically simulate an Internet-
wide worm outbreak. No such simulator was available, and hence we created

8.1 Review of Contributions 109

one as part of this work. It uses an Internet model that centres on the speed of
the “last mile” Internet access connection statistics of home users and proved
to be able to realistically simulate known worm outbreaks, up to the time
when network saturation sets in. When saturation effects start to appear, re-
alistic simulation becomes very difficult, since Internet network behaviour at
saturation is very hard to predict and dependent on the specific characteristics
of the traffic causing the saturation. In measurement data wealso observed
effects of manual intervention during worm outbreaks, suchas installation of
network filters, that a simulator cannot predict. Since we were primarily in-
terested in the early behaviour during worm propagation, due to our interest
in early detection of fast Internet worms, the simulator wasperfectly adequate
for our purposes.

The simulator is described in Chapter 3 and was the subject ofa publica-
tion [110].

Model the entropy-effects of fast Internet worms theoretically (Science)

We were able to model entropy effects during worm outbreaks in a qualitative
fashion. During a worm outbreak a lot of target IP addresses are contacted.
Ordinarily, many of these would not have associated traffic,since no hosts are
attached to them. At the same time the hosts doing these connection attempts
are few during the early phase of a worm outbreak. We were ableto show
mathematically that this behaviour causes a specific impacton flow-level en-
tropy scores for IP addresses, specifically a decrease in source IP address
entropy and an increase in destination IP address entropy. Quantitative pre-
dictions require realistic modelling of the baseline traffic, which is the subject
of ongoing research, see e.g. [19].

The theoretical foundation for the impact of worm propagation traffic on
Internet flow-level traffic data is described in Chapter 4.

Identify and quantify the effect the outbreak of a fast Internet worm has
on NetFlow dataset entropy scores (Science)

We made measurements on real traffic data from the SWITCH network,
which connects most Swiss universities and some research centres. The ad-
vantage of this data is that it has a diverse traffic mix, as it also contains a lot
of Internet traffic created by students. Observations of fast Internet worm out-
breaks in this traffic data pool did confirm the presence of theentropy changes
predicted by theory and allowed quantitative observationsof these changes.

110 8 Conclusion

The measurements also served to identify baseline traffic characteristics and
ultimately lead to the fast Internet worm detector design, which is at the core
of this work.

Chapter 4 described the details of observations made on captured traffic
data. The observed effects have also been described in [111].

Evaluate the suitability of compression for entropy estimation (Science /
Engineering)

In order to explore the suitability of compression techniques as an alternative
method of estimating entropy and entropy changes, we performed extensive
measurements comparing entropy estimated by sample entropy and entropy
estimated by compressibility. The results show that compression is a suit-
able method for estimating entropy changes in flow-level Internet traffic data.
While accuracy is worse than for sample entropy, the results are viable for
use in a detector for fast Internet worms. Memory consumption in partic-
ular is reduced dramatically, typically to a low and constant amount, while
computational effort stays very low.

Chapter 5 describes the use of data compression for entropy estimation of
flow-level traffic data. The evaluation in Chapter 7 shows that this approach
increases inaccuracy only moderately. The idea of using compression as en-
tropy estimator for the purpose of detecting fast Internet worms was published
in [111].

The design of a detector for fast Internet worm outbreaks based on
entropy measurements and evaluation of its characteristics (Science /
Engineering)

In order to allow detection of fast Internet worms in high-speed networks,
we created a detector that is capable of solving the detection task with high
accuracy, low latency and low resource needs. The detector is suitable for
real-time online-line use. The idea is to monitor localisedchanges in the en-
tropy profile of IP addresses and port numbers for specific change patterns.
The detector can be calibrated for different levels of sensitivity and worms
with different traffic port profiles. The number of false positives can be low-
ered even further, if a slightly higher detection latency isaccepted, by using
a multi-interval detector that tests for the presence of worm-scan activity in
several consecutive measurement intervals.

8.1 Review of Contributions 111

In addition the detector design allows easy combination of differently cal-
ibrated detectors into clusters. One advantage is that using detectors with
different sensitivity levels can first provide very early detection with low re-
liability, i.e. a high rate of false positives. The detection reliability level can
then be increased by slower, less sensitive detectors. Thisprovides a pre-
alerting capability. Clusters of detectors scale very well, since the main effort
lies in the entropy estimation, which has to be done only onceper traffic data
stream.

The detector and its calibration procedure are described inChapter 6. Its
validation on real traffic data is given in Chapter 7.

8.1.1 Summary

We have solved both the scientific and engineering challenges this thesis
work presented. A working, practical and efficient detectorfor fast Inter-
net worms was designed, implemented and validated on real traffic data from
a moderate-sized Internet Backbone network, using two well-understood fast
Internet worm outbreaks as benchmarks. The detector is suitable for real-
time online use. Measurements of CPU and memory consumptionshow that
the design scales to significantly larger networks, withoutthe need to reduce
data volume by sampling or other means. To reduce memory consumption
further, we have demonstrated that replacing sample entropy measurements
with compressibility scores obtained with a very fast data compression algo-
rithm can be used, with only a small impact on detection quality. This allows
implementation of our detector with a very small memory footprint, as traffic
data can be discarded immediately after compressing each individual traffic
record.

At the same time, the core idea of the detector design has beenexamined
and explained theoretically. Propagation traffic from a fast Internet worm
has a strong one-to-many property, that is not present in baseline traffic. In
addition, IP addresses that have no hosts attached to them, receive traffic from
connection attempts by the worm. A theoretical argument shows that if the
baseline traffic does not change and this type of traffic is added to it, the source
IP address entropy decreases, while target IP address entropy increases. This
is consistent with observations made during real worm outbreaks. For port
numbers there is a similar effect, but it is weaker and can be reversed or can
have similar impact on source and destination port fields. The reason is that,
with regard to IP addresses, a few infected hosts allways need to contact many

112 8 Conclusion

potential target IP addresses. For ports, however, each side of the connection
can either use a fixed or a variable port, depending on the vulnerability used
and the preferences of the worm designer.

In conclusion, we have solved the problem of detecting fast Internet
worms in high volume networks, using only flow-level data. Our solution
does not require knowledge of the specific vulnerabilities(s) used by the worm
to infect target systems or its specific traffic characteristics. This makes a fully
generic detector possible. As an additional benefit, the solution has low re-
source needs and very good detection quality with regard to false positives
and detection latency.

8.2 Limitations

Every scientific work has its limitations, and this one is no exception. We will
discuss the ones we know about below.

• The sensor we developed focusses on one specific approach, namely
detection on entropy-abstracted flow-level data. Other sensor types are
possible and have been investigated. However, for a scientifically sound
analysis of a sensor type, it has to be evaluated on its own, before com-
bining it with other sensors.

We submit that exploring the possible synergetic effects ofcombining
different, individually understood, detection techniques for fast Internet
worms represents a major scientific undertaking in its own right. One
specific danger is over-fitting, i.e. customising parametrisation tightly
enough to a specific benchmark data set so that the generalityof the
result becomes very low. Typically, more complex sensors are more
prone to over-fitting, since they can match the specific characteristics
of a benchmark data set better.

For this reason, an evaluation of each individual sensor type, in as
transparent a fashion as possible, is essential. We believethat we have
reached this goal for the specific sensor type we presented inthis work.

• Our detection approach represents new and fundamental research. The
impact of long-term changes in network traffic characteristics is cur-
rently unknown. Periodic re-calibration of the sensors maybe needed
in order to maintain sensitivity and a low rate of false positives. It

8.3 Relevance of Our Results 113

would be beneficial to determine long-term changes in baseline be-
haviour and their impact on entropy-abstracted traffic parameters.

• Traffic data from small networks is more noisy, which leads tomore
false positives and limits applicability of our approach. Determining
the actual differences between traffic data from small volume networks
and large volume networks could serve to adapt our detector design to
smaller networks as well.

8.3 Relevance of Our Results

Most fast Internet worms fall into the time period from 2003 to 2005. Activity
has decreased significantly since then and no fast Internet worms had their
initial outbreak in the years 2006 and 2007 so far. One reasonis a shift to
application-generated overlay networks. A number of IM (Instant Messaging)
worms were observed in 2005 and 2006. A second reason is that fast Internet
worms have lost their initial appeal to the people that writemalcode simply
to see whether it can be done (and possibly to brag, as the arrest of the Sasser
worm author in May 2004 [5] shows). The technology of fast Internet worms
is now reasonably well understood. A new worm will just be more of the
same and not a reason to receive admiration from peers1.

A second reason is that fast Internet worms are the equivalent of a WMD
(Weapon of Mass Destruction). No precision strikes are possible and collat-
eral damage is huge. This makes fast Internet worms unsuitable for criminal
purposes, since law enforcement will be highly motivated totrack the orig-
inators down. Any way to effect criminal gain. i.e. money, offers a very
good possibility of getting caught, since tracing money flowis a tried and
true criminal investigation strategy. Consequentially, criminals using com-
promised Internet hosts have shifted to bot-networks in thelast few years,
that are built up slowly and ideally in such a fashion that theowners of the
compromised hosts do not notice the compromise at all.

A third reason may be that easily exploited vulnerabilitiesin operating
systems have decreased, possibly as a result of the worm epidemics seen
over the last few years. This does not mean that operating systems are no
longer vulnerable. It just means that the competence level needed for find-
ing a vulnerability and exploiting it successfully is higher now. Analyses

1We cannot imagine that writing worms or other malware works wellas a strategy “to impress
girls”. Nonetheless, even more bizarre approaches to that question have been tried in the past.

114 8 Conclusion

of past worms show that worm authors are typically not very proficient pro-
grammers, with the notable exception of the Witty worm author. There are
also still enough vulnerabilities left to make fast Internet worms an ongoing
possibility, for example see [4, 43]. As the Witty worm demonstrated, even
a small vulnerable population (about 15’000 hosts for Witty) can be enough
for successful deployment of a fast Internet worm.

We believe that these developments have made the deploymentof “proof
of concept” worms unattractive. Not only is a greater effortneeded, the recog-
nition gained is small. However, individuals and groups craving global atten-
tion may in the future use fast Internet worms in an attempt todo global dam-
age. Currently these groups do not seem to have the technological knowledge
to create fast Internet worms. It is also possible that the Internet is not yet
widely enough perceived as critical infrastructure to makeit a worthwhile tar-
get of terrorist-like activity. Nevertheless, the ground work has been laid and
the knowledge on how to create fast Internet worms is out there. At the same
time, defences are basically non-existent. We submit that detection technol-
ogy is a crucial part of any defensive strategy. Even if effective defences
prove impossible, successful and early detection of the attack increases the
effectiveness of any type of damage-limitation since it allows fast analysis of
what actually happened. The sensor presented in this work can play a signif-
icant role in early detection of attacks based on fast Internet worms. It has
the potential to be widely deployed, since it is lightweightand does not need
costly infrastructure.

8.4 Directions for Future Work

This work can be extended in several directions. We propose that future ef-
forts are spent on the following tasks:

• Extend the detector to detection of other large-scale anomalies besides
outbreaks of fast worms. Possible anomalies to be examined for detec-
tion by entropy changes are massive scanning activity, flooding-type
attacks that use a large number of flows, because source IP addresses
are spoofed and randomised, and attacks against or scans forspecific
services.

• Specifically for general anomaly detection, it may be beneficial to com-
bine our detector with other traffic metrics and detection schemes. Syn-

8.4 Directions for Future Work 115

ergetic effects could be significant. As our detector is veryresource ef-
ficient, adding it to installations of other detectors and monitors should
be feasible without hardware and software upgrades in many cases.

• The toolset and libraries created are only suitable for NetFlow version
5. It would be beneficial to extend them to include handling capability
for NetFlow version 9 [30] and eventually IPFIX [82].

Appendix A

The DDoSVax NetFlow
Toolset

The DDoSVax NetFlow Toolset was designed and implemented aspart of this
thesis. In order to allow effective work with NetFlow data, abasic toolset and
library was needed. Design and implementation started at the beginning of
the project. Optimisation and extension went on during the project lifetime.
At the end of the work on this thesis, the created general NetFlow tools were
stable, reliable and efficient and had been used not only for this thesis, but also
as a basis of some of the work in the Ph.D. thesis of Thomas Dübendorfer [36]
and numerous student theses in the context of the DDoSVax project.

The toolset operates on NetFlow Version 5, the type of NetFlow records
collected in the DDoSVax project. All libraries and tools are written in ANSI-
C with some GNU extensions. Currently the DDoSVax toolset isonly avail-
able upon request in a “research version”. An open source release under
GPL/BSD dual licensing is in preparation.

A.1 Design Approach

The DDoSVax project aims both at near real-time processing of NetFlow data
and at offline processing of large data-sets for scientific analysis. The pri-
mary data processing mode isstream processing, where a stream of NetFlow
records is processed record-by-record, usually read from afile or a set of files.

118 A The DDoSVax NetFlow Toolset

Tools may also read a sequence of NetFlow export packets fromthe STDIN
stream, from a named pipe or from a TCP or UDP socket. The toolset is
split into a library part, that encapsulates the NetFlow v5 specific operations,
and a set of command line tools. The included command line tools allow ba-
sic forms of data analysis and transformation and serve as example code that
demonstrates the use of the library. For new algorithms, theuser is expected
to create new code, building upon the library.

A.2 Architecture

A.2.1 Tool I/O and Interconnect

Most tools in our toolset read data from file, usually containing NetFlow ex-
port packets in the original export sequence. These files canbe raw or com-
pressed. In the second case, the tool detects the compressor(by file extension)
and performs transparent decompression.

The primary means of stringing tools together into a longer processing
chains are the data stream interfaces offered by Unix-like operating systems,
i.e. network sockets (TCP, UDP), FIFOs (named pipes, a.k.a.Unix domain
sockets) and theSTDIN andSTDOUTstreams. These interfaces can be used for
input and/or output, depending on the individual tool’s functionality. Final re-
sults can also be written to file. The toolset contains a tool (netflow replay)
that reads NetFlow packets from file and sends them via the stream interfaces
mentioned above. This tool can be used to simulate real-timeonline process-
ing with stored data.

A.2.2 NetFlow Version 5 Export

We now give a brief discussion of the NetFlow v5 binary format, defined by
Cisco [28, 29]. Note that Cisco keeps moving the informationon its website
and that sometimes in the past it has not been available at all. For this reason,
we replicate the relevant information here.

Packet Format

NetFlow v5 data is exported as a stream of UDP packets. The packets contain
a header, shown in Table A.1, and a number of flow records directly following
the header. The format of the flow records is shown in Table A.2. All fields

A.2 Architecture 119

are exported in network byte order. Positions are specified as byte-offset from
the beginning.

The field names are taken from the information available on the Cisco
website in 2003. Note that the names follow different conventions, for ex-
ample capitalised (SysUptime), with underscores (unix secs), direct word
combination (dstaddr) and possibly other, not too clearly identifiable con-
ventions. This mixture gives a strong hint to a not very well controlled histor-
ical growth of this export format. In addition to the field definitions by Cisco,
we will give our concrete experiences with each data field as manifested in
the SWITCH network data.

Position Name Description

0-1 version Fixed to 0x00 0x05 (i.e. Version 5)
2-3 count Number of flow records in this packet
4-7 SysUptime Current milliseconds since boot
8-11 unix secs Current time (full seconds)
12-15 unix nsecs Current time (residual nanoseconds)
16-19 flow sequence Total flows seen
20 enginetype Type of flow-switching engine
21 engineid Slot number of the flow-switching engine
22-23 reserved Unused bytes, should be zero

Table A.1: NetFlow Version 5 Header Format

count: The number of flows in one flow packet can take any value between1
and 30. The hardware engines in the routers typically use a fixed num-
ber of records per export packet, for example 27 or 29. The software
engines are more variable (software engines handle the special routing
cases) and can use any legal number of records in an export packet.

SysUptime: In theory, this is the export device system uptime in millisec-
onds when the flow packet was exported. In practice, this value seems
to be the time when the header was created in router memory. Wehave
observed packets where this value was set to a time shortly before some
of the flow-end timestamps in the flow records of the same packet. This
value is an unsigned 32 bit integer and rolls over after roughly 50 days.

unix secs, unix nsecs: This is the time-since-the-epoch timestamp that
corresponds to theSysUptime field. While it has space for nanosecond

120 A The DDoSVax NetFlow Toolset

Position Name Description

0-3 addr Source IP address
4-7 dstaddr Destination IP address
8-11 nexthop IP address of the next hop router
12-13 input SNMP index of input interface
14-15 output SNMP index of output interface
16-19 dPkts Packets in this flow
20-23 dOctets Number of Layer 3 bytes in this flow
24-27 First SysUptime at start of flow (milliseconds)
28-31 Last SysUptime at end of flow (milliseconds)
32-33 port TCP/UDP source port number or equivalent
34-35 dstport TCP/UDP destination port number or equivalent
36 pad1 Unused
37 tcp flags Cumulative OR of TCP flags
38 prot IP protocol number
39 tos IP ToS
40-41 as Origin AS, source or peer
42-43 dst as Destination AS, source or peer
44 mask Source address prefix mask bits
45 dst mask Destination address prefix mask bits
46-47 pad2 Unused

Table A.2: NetFlow Version 5 Record Format

precision, it seems to have millisecond resolution or closeto it. This
value can be used together withSysUptime to calculate the actual start
and end time of exported flows. The stated time may be slightlybe-
fore the packet was exported from the router, just as the value of the
SysUptime field.

flow sequence: A per-engine counter of the number of flow records ex-
ported so far. Note that there is typically more than one flow record
in an export packet. This field can be used to determine whether flows
were lost in transfer to the collector. In the SWITCH network,some-
times export packets do not arrive in the correct order at thecollector.

engine type, engine id: The engine id identifies the flow engine a
packet was exported from. Theengine type is supposed to identify
the type (software, hardware) of flow engine as well, but we were un-
able to find a concise definition of its meaning.

A.2 Architecture 121

sPkts, sOctets: Take care that these numbers may not describe the com-
plete flow length. A flow may be cut because an export conditionsuch
as idle-timeout, maximum-duration or low router memory mayhave
been reached. The rest of the flow will then be exported later.Cut
flows are not specially marked and heuristics have to be used to identify
them. UDP and ICMP packets are sometimes aggregated into multiple
packet flows, but not allways.

First, Last: These values are the flow start and end timestamps, given in
the same fashion as theSysUptime header field. As these values are
32 bit unsigned, theLast value may have rolled over while theFirst
value has not, hence giving the appearance of flow-end beforeflow-
start. Both values may also have the same value, typically for single
packet flows. In the SWITCH network, the accuracy of the start times-
tamps is typically high enough to identify which side of a bidirectional
connection was the connection initiator.

port, dstport: These values give connection source and destination port
for TCP and UDP connections. For ICMP thedstport and/or the
port field are supposed to contain the ICMP type and code. We have
observed this in some instances, but almost all ICMP flows in the
SWITCH data have a of type 0 code 0 (Echo Reply), without corre-
sponding type 8 code 0 (Echo Request) ICMP flows. We believe that
only the software engines set these values correctly for ICMP.

tcp flags: This fields is zero in the SWITCH data. It is a big point of dis-
satisfaction with security researchers and practitionersthat many Cisco
routers do not export TCP flags. Aparently, this behaviour started in
2002 and is due to performance considerations. The flags would be
useful to identify connection initiators and other things,for example
flows containing only an RST packet in one direction.

tos: As far as we know, thetos field is always zero in the data exported
from the routers used by SWITCH.

mask, dst mask: These are the lengths of the respective masks in bits.

Time Handling

NetFlow v5 time reporting has some intricacies. The export time of a flow
packet is given as unsigned 32 bit value in milliseconds fromthe time the

122 A The DDoSVax NetFlow Toolset

exporting device was started. Flow start and end timestampsare given in
the same way. The export time is also given as time-since-the-epoch with
nanosecond precision and millisecond resolution. The millisecond fields roll
over after roughly 50 days system uptime. Export timestampsmay actually
beafter or beforethe individual flow record start and end timestamps. These
factors make time calculation using the 32 bit milisecond format error prone.
The NetFlow library uses 64 bit signed millisecond values torepresent all
timestamps internally and provides reliable routines to convert the NetFlow
v5 time representation to this format.

The option to reduce timestamp resolution in our NetFlow tools, as, for
example, done in earlier versions of the SILK tools [45,94],was rejected, be-
cause millisecond resolution is just about precise enough to determine which
side initiated a bidirectional network connection.

Export and Aggregation Modalities

From our observations, the SWITCH network routers export a flow record
when one of several conditions is satisfied. If a flow record has been exported
and more network packets belonging to the same connection are seen later,
they are exported in a new flow record. Note that NetFlow packet export
speed is not uniform over time. The routers seem to segment their memory
and do flow export individually for the segments in a round-robin fashion. We
know of the following export conditions:

• A TCP connection is idle. Around 30 seconds idle time is required to
trigger flow export.

• A TCP connection was closed. This condition uses only one direction
of a connection and is satisfied if a FIN or RST flag is seen.

• The connection duration exceeded a threshold. At the beginning of
the DDoSVax project, this threshold was 15 minutes for the hardware
engines and 30 minutes for the software engines. Late in 2003, it was
changed to a consistent 15 minutes on all engines. Note that this value
is variable in practice. Long flow fragment lengths between 14 minutes
and 16 minutes need to be expected.

• A UDP or ICMP packet is typically exported as a single flow record.
Aggregation can happen for fast packet sequences.

A.3 Library Components and Tools 123

• Low memory in the router can also be a factor and can cause early
export of flows that have not yet met any of the other export conditions.

A.3 Library Components and Tools

Derived from the stream processing model, the basic mode of operation is to
process one NetFlow record at a time. The NetFlow library does not deal with
sets of records, although there are containers that can be used to store and ma-
nipulate such sets. The most important library components are documented
below. When writing the code, we took care to use a clean structure and
comprehensive in-code documentation in order to facilitate usage by others.

The DDoSVax NetFlow Toolset is under dual-licensing, it canbe used
both under the GPL Version 2 [48] and the modified BSD license [72]. The
original copyright holder is the author of this thesis.

Library Components

Each library is represented by a set of.c and.h files. The former contain the
actual code, the latter the definitions and documentation. The names given
below are the prefixes of the filenames of a given library component.

netflow v5

This library component contains the basic flow handling functions and
the data structures for flow representation. NetFlow exportpackets
can be read and stored instruct netflow v5 header and struct
netflow v5 record data structures. It is also possible to re-synthesise bi-
nary export packets from NetFlow headers and records. An important func-
tion is netflow v5 timing that, given a flow header and record, calculates
start-, end- and export-time in time-since-the-epoch format with millisecond
precision. In addition, this library provides functions toconvert flow data to
different printable representations.

ip match

This library component provides a data structure that allows the definition
of sets of IP address ranges and testing IP addresses for membership. Ad-
dress sets can be read from a textual representation. The SWITCH IP ranges

124 A The DDoSVax NetFlow Toolset

(AS559) are predefined. The provided functions are intendedonly for address
sets that consist of a relatively small number of linear address ranges, such
as a set of subnet addresses. Address set manipulation aftercreation is not
supported.

ip table

In contrast toip match , ip table is a data structure optimised to represent
large, unstructured sets of IP addresses. It is has the functionality of a bit-
vector with 232 positions and is implemented as a two-level tree with a worst
case memory need of 576MB plus memory management overhead (an addi-
tional 160MB with libc6 2.3.2.ds1-2). The table supports insertion, deletion
and element count efficiently. Following ideas from object oriented software
construction, the table is multi-instance capable.

hashed table

This is a general purpose hash table. It is multi-instance capable and supports
true deletion, i.e. the memory allocated by the table shrinks when enough ele-
ments are deleted. Keys can be any binary object and are copied on insertion.
Care must be taken that some compilers pad structures with unpredictable
data, making them unusable as keys. Structures intended to be used as keys
should be converted to binary strings first. Elements can be stored directly if
they fit into the space of avoid * or can be referenced otherwise. The table
does automatic re-hashing when the number of elements growsor shrinks and
allocates or frees memory accordingly. The default hash-function is from the
SGI C++ STL Library [100] and efficient for general data [100]. The user can
also supply a different hash function.

collection

This library component supplies two containers for linearly numbered se-
quences with array-like access but dynamic size. Elements are void * as
in the hashed table . One of the implementation,arrayed collection is
based on native arrays. The other,linked collection uses linked buck-
ets. Both containers are multi-instance capable and have exactly the same
interface and functionality, except for creation. The individual operations can
have different time complexities for both implementations. Sorting with a
user-supplied comparison function is supported inO(nlogn) time.

A.3 Library Components and Tools 125

prio queue

This implements a general-purpose priority queue based on aheap represen-
tation. Priorities must not be changed for elements of the queue. Objects are
stored asvoid * . Priority is implemented by a comparison function the user
has to supply upon data structure creation. The heap is stored in an array
that is dynamically resized when needed. Theprio queue is multi-instance
capable.

mt19937

The Mersenne Twister MT19937 [68, 69] is a high quality Pseudo Random
Number Generator (PRNG). It is included in the toolset, since PRNGs in C
libraries are frequently of low quality. Using this portable generator avoids
problems and removes the need to evaluate PRNGs provided on aplatform.
This implementation provides pseudo-random values in the form of 32 bit
integers, 31 bit positive integers, reals (IEEE 754 “SinglePrecision”) in the
range[0,1) with full 23 bit resolution and doubles (IEEE 754 “Double Preci-
sion”) in the range[0,1) with full 52 bit resolution.

cfile tools

The “Compressed File Tools” offer functions for transparently reading com-
pressed and uncompressed files. File access is analog to the binary stream
input functionfread from the ANSI C standard. Reading lines is supported
as well. The file compression type is deduced from the filenamegiven. At the
moment, uncompressed, gzip and bzip2 formats are supported.

Errors from the compressors and errors from the underlying filesys-
tem access are unified into one mechanism and accessible via the functions
cfr error to query stream error status andcfr strerror , to obtain a print-
able description of the error status.

Command Line Tools

Several command line tools are contained in the DDoSVax NetFlow toolset.
They serve as a basis for simpler analysis work and as examplecode for the li-
brary. To this end, the code is carefully documented, even giving explanations
about non-obvious NetFlow data properties. Thenetflow to text tool, in
particular, turned out to be very useful to facilitate explaining the NetFlow

126 A The DDoSVax NetFlow Toolset

data structures to students. There are also several “iterator templates”, i.e.
code templates that read NetFlow data and present each record at a specific
place in the code in a set of variables. These serve to greatlyspeed up the tool
creation process. All tools can be called with command line option “-h ” to
display a summary of the available options. In addition, several more specific
tools were developed for research applications. As these are only “research
quality”, they do not qualify for inclusion in the general toolset.

netflow to text

This tool reads one input file consisting of NetFlow v5 packets and displays
them in various ways. It can also read fromSTDIN. One of the display formats
is the complete header and record information on multiple lines. Several other
formats print each record on a single line. These formats areespecially useful
for processing and filtering via scripts written in Perl or Python, and with shell
commands likegrep , sort andwc.

netflow iterator template2

This template is basicallynetflow to text with the output section removed.
All NetFlow headers and records, together with timestamps in directly usable
form, available at one place in a loop. The loop is carefully documented and
includes sample output statements, demonstrating the dataproperties.

Note: Originally there was anetflow iterator template , but it was
not very structured and eventually removed and replaced by this template.

netflow iterator template3

This template is similar tonetflow iterator template2 , but can read and
process a series of input files.

netflow replay

This tool can be used to replay a NetFlow data file, for exampleto simulate
real-time processing or to split data processing over several hosts. It reads
data fromSTDIN or file and sends a stream of NetFlow packets alternatively
to a UDP socket, a TCP socket or a FIFO. Replay speed can be unconstrained,
with a specific inter-packet delay or a delay that is derived from the original

A.3 Library Components and Tools 127

export timestamps in the netflow packets multiplied by a factor. Figure A.1
gives an example usage scenario.

netflow replay mult

This is a wrapper-script that usesnetflow replay to replay a set of files in
lexicographic order of the filenames. All options besides the filenames are
passed tonetflow replay .

netflow mix

The netflow mix tool can be used to mix two packet streams according to
the NetFlow export timestamps. The data is read from two FIFOs given on
the command line and written toSTDOUT. The output can be sent onwards by
usingnetflow replay , redirected to file or processed by a tool reading from
STDIN. Figure A.1 shows an example scenario.

.

.

.

.

.

.

netflow_replay_mult

netflow_replay_mult
Named Pipe 2

Named Pipe 1

Input File Set 1

Input File Set 2
netflow_mix

STDOUT to

STDIN
netflow_replay

UDP Stream

Figure A.1: Example usage ofnetflow mix

netflow sample

In order to allow exploration of the impact of sampling, thistool reads Net-
Flow data from file and writes a sample to a target file with a ratio given by
the user. The target size will not be exactly as expected, since each indi-
vidual record will have the same probability of being dropped. In this way
artefacts in the input data, like nonuniform data export by the routers, do not
influence the sampling scheme. The usable sampling rate is inthe range of
one in 1.0. . .1′000′000.0 records. The mt19937 library is used as a source of
randomness, initialised from\dev\urandom .

128 A The DDoSVax NetFlow Toolset

netflow port stat

This is an example application that generates traffic statistics for a specific
TCP or UDP port.

netflow prot stat

This is an example application that counts flows, packets andbytes for TCP,
UDP, ICMP and other traffic.

netflow hosts stat

This is an example application that generates traffic statistics for each host
seen in the set of input NetFlow data files.

netflow ip count

This is an example application that counts the number of different IP ad-
dresses seen in the set of input files.

netflow head

This application cuts down a NetFlow data file to a set of export found at its
beginning.

netflow split

This tool allows splitting NetFlow files that consist of the exported data from
several routing engines into separate files. It is customised to the SWITCH
data. There are two instances:netflow split 19991 for data sent to port
19991 on the capturing system andnetflow split 19993 for data sent to
port 19993. Since the NetFlow export packets do not contain originator in-
formation, the sender IP addresses of the collected packets, stored by the
collector in files named the same as the packet files but with extension.stat ,
are used.

A.4 Notes on Performance 129

A.4 Notes on Performance

Most of the NetFlow data files used in the DDoSVax project are compressed
with bzip2 [24] (see Appendix C for a discussion of compressor alternatives).
As a consequence, decompression forms a significant portionof the overall
processing effort. On average, the DDoSVax project captures about 650MB
of bzip2 compressed data per hour (as of December 2005, roughly equivalent
to 2GB of uncompressed data). On a SCYLLA cluster node (see Appendix
B), with the data presen on the local disk, this results in theprocessing time
examples given in Table A.4. Data properties are not constant and disk per-
formance is dependent on file placement. Therefore, these figures should be
regarded only as rough approximations.

Activity CPU time elapsed time
read compressed data from disk - 15 s
read raw data from disk - 44 s
decompression 162 s -
data parsing 36 s -
netflow sample , 1 in 1’000’000 174 s 174 s
compressed input, output to file
netflow sample , 1 in 1’000’000 8.6 s 44 s
raw input, output to file
netflow to text full output 313 s 313 s
compressed input, output to /dev/null
netflow to text full output 242 s 243 s
raw input, output to /dev/null

Table A.3: Processing 650MB bzip2 compressed data on SCYLLA node

A.5 Lessons Learned

• Time handling for NetFlow v5 data is non-trivial and has hidden pit-
falls. Encapsulation into a library that calculates a single, clear time
value for every time field in the flow header and record is important to
facilitate time handling, especially for novice (student)NetFlow users.
The internal time format in the DDoSVax NetFlow toolset, namely
time-since-the-epoch format with millisecond resolutionstored in 64

130 A The DDoSVax NetFlow Toolset

bit signed (long long) values, has proven to be adequate. As timestamps
in the raw data have only millisecond resolution, a higher resolution for
the internal format would not have been an advantage. A lowerreso-
lution would have been problematic, because millisecond resolution is
just about enough to determine originator and responder of atwo-sided
connection.

• The examplesand thecode documentationturned out to be well
suited to allow students using the DDoSVax NetFlow data to quickly
understand the nature of the data and the usage of the toolset. Espe-
cially the netflow to text tool was very valuable, as it allows low-
effort access to the raw data in a human-readable format.

• Processing speedof the toolset is adequate, given the availability of a
computer cluster. With more limited resources (e.g. a single worksta-
tion) data-reduction as a preprocessing step would have been unavoid-
able and many of the results of the DDoSVax project could likely not
have been obtained.

• Library versatility is adequate for research. The tools created are not
intended to for a complete set, but are basic tools and examples for
library usage. This approach worked well in several studenttheses and
can be regarded as a success.

• The primary performancebottleneck is CPU and not I/O, contrary to
the experience of other projects using (uncompressed) NetFlow data.
Overall this turned out to be beneficial, since it allows distribution of
computations on several computers when the data comes from asingle
file server. The relatively high base CPU load from decompression also
had benefits, as it allows for a stronger focus on algorithm functionality
and limits the temptation to directly write highly optimised code. The
problems of too early optimisation, such as far longer implementation
time, less code flexibility and a higher rate of code errors, could be
avoided in most cases.

A.6 Comparison to Other Toolsets

The SILK tools [45, 94] are another toolset for flow data analysis. They are
available under an open source license and are being developed and main-
tained by Michael Collins and others. While the focus of the DDoSVax

A.6 Comparison to Other Toolsets 131

toolset is on non-interactive analysis and analysis of large amounts of data
for research and monitoring purposes, the SILK tools focus on interactive
work by a security analyst.

The DDoSVax tools expect the user to write code to use the libraries di-
rectly in order to do more complex analysis steps. This allows scripted, large-
scale analyses. With the SILK tools, the user starts by selecting a time frame
of records to work on. The set of selected records is then narrowed down by
filtering with command line tools that implement individualprocessing steps.
At the end, the analyst ideally has found a set of flow records that correspond
to a single incident.

While the DDoSVax tools have the philosophy of doing as much aspos-
sible in memory, the SILK tools use the disk as intermediate storage. For
example, determining the IP addresses in a specific flow-set,the end result
with the SILK tools will be a file listing all these addresses.With the DDoS-
Vax tools, it will be a specialised hash-table in memory thatlists these IP
addresses and can be directly used for further steps. Both approaches have
advantages and disadvantages.

While the DDoSVax toolset and the SILK tools are designed to work on
similar data, they are complimentary in their aims. The SILKtools are aimed
at the security analyst that interactively determines the nature and extent of a
particular intrusion. For that reason, the SILK tools aim toprovide a complete
set of command line tools optimised for this usage. The DDoSVax toolset is
aimed at batch processing of large numbers of flows for research purposes. It
provides libraries that facilitate creation of research tools and includes basic
analysis tools and example applications. It does not try to anticipate what the
user wants to do in order not to limit the directions researchcan go in.

Appendix B

Data Processing
Infrastructure

B.1 Motivation

The two primary reasons for building a dedicated NetFlow data processing
infrastructure were performance issues and security concerns. NetFlow data
processing creates significant disk I/O and often the disks represent the main
limiting factor for the overall processing speed. This was at odds with the ex-
isting computing infrastructure that primarily relied on centralised storage on
file servers and was designed with computationally-intensive tasks in mind.

The second concern arose because the data collected is protected by Swiss
privacy laws and special care in handling it needs to be observed. The easiest
way to implement a good level of protection was by creation ofa dedicated
system that is accessible only to users that are authorised to work on the data
in question.

The cluster system described here was in operation from late2003 to mid
2007. It was named the “Scylla Cluster”, after the Scylla creature from Greek
mythology. Scylla is a sea monster, with six long necks equipped with grisly
heads.

134 B Data Processing Infrastructure

n02

n22

aw3

aw5

aw4
...

Cluster Nodes Unmanaged Gigabit
Ethernet Switch

(Simplified)

Remote Reset

Data Transfer Server

File Server,
Debian Mirror

File and Login Server

Internet

n01

Node
Test

Figure B.1: “Scylla” cluster structure

B.2 Structure

The primary cluster structure is given in Figure B.1. There are two servers,
aw4 andaw5, that take the role of file-servers and have Internet connectivity.
The first one,aw4, also doubles as a log-in server. In the standard configu-
ration, users can log in to the cluster nodes fromaw4 without giving a pass-
word. Both connect to a private Gigabit Ethernet network, that forms the only
network connection of the 22 cluster node PCsn01 -n22 . The nodes all use
identical set-ups and similar hardware. The first one,n01 , has a remote reset
capability and serves as a test-node. The actual internal network is imple-
mented using one 24 port and one 5 port commodity Gigabit Ethernet switch.

B.3 Software and Configuration 135

The data transfer system,aw3 (see Appendix C for its function), is connected
to the internal network of the cluster as well. This allows fast access to the
last 4-6 weeks of captured data, available onaw3.

B.3 Software and Configuration

All systems in the cluster run Debian Linux. The nodes can be installed
automatically using FAI (Fully Automatic Installation, [41]). Installation of a
new system on all 22 nodes is possible in less than 10 minutes.

Originally the cluster was also running OpenMosix [77], which features
automatic load-levelling and process migration between systems. However,
due to problems with hardware support and lack of development, OpenMosix
was removed later.

All data partitions in nodes and servers are exported on the internal
network via NFS and mounted on-demand by the Linux kernel level auto-
mounter. The advantage is that if a system becomes unavailable and then
available again, there is no need to manually mount exports from other sys-
tems and non-available exports will not cause the system to hang.

B.4 Hardware

Year Servers (total) Each Node
2003 800GB 120GB
2007 4.7TB 200GB - 250GB

Table B.1: Initial and final available cluster disk space

The cluster nodes have one Athlon XP 2800+ CPU, 1 GB RAM and,
initially, one 120GB IDE disk. The file serveraw4 has two Athlon MP 2800+
CPUs, 2 GB RAM, a PCI-X bus, and, initially 600GB of availableRAID5
space. The other server,aw5, has the same hardware as the cluster nodes,
but provides an initial available disk space of 200GB in a RAID1 array. All
RAID is Linux software RAID.

Over time, the storage space on the nodes and the file servers evolved. The
file servers needed more space to store interesting data intervals and analysis

136 B Data Processing Infrastructure

results. For example, the data captured around a worm outbreak event would
be made available on a file server, in order to avoid the time-consuming trans-
fer from the tape library. The nodes were extended by additional disk-space
as well, as projects started to need more space for the actualdata under anal-
ysis. Table B.1 shows the initial and final disk space available on the file
servers and cluster nodes.

B.5 Security Concept

The primary security measure is to restrict open ports on theservers to the
SSH port (Secure Shell, port 22/tcp) and block all others using the Linux
kernel firewall. Log-in is done only using SSH certificates toprevent pass-
word guessing attacks. Within the cluster, only ordinary security measures,
such as using a reasonably current system installation, areused. We expect
that, within the cluster, an enterprising user can elevate his or her privileges
with moderate effort. Since all users on the cluster are working with sensi-
tive data anyways, we do not consider this to be a significant threat. On the
user side, especially student users doing a thesis, are warned that the data
they are working on is subject to Swiss privacy laws and that any misuse can
lead to personal legal consequences for them. In addition, they are allowed
only to log in to the cluster from one machine with a current and maintained
Linux installation with firewall settings that block all access from the outside.
Students that need more connectivity or want to run an alternative OS are
provided with a second computer.

During the operation time of the Scylla cluster, there was nosecurity
breach that we are aware of. The only potential incident was an insecure
SSH implementation in Debian, which needed to be replaced byan older,
non-vulnerable SSH implementation for a limited time. The follow-up sys-
tem, that replaces the Scylla cluster, uses the same security concept.

B.6 Experiences and Lessons Learned

We encountered several noteworthy operational issues during the lifetime of
the computer cluster. These were mainly hardware issues. Inaddition, some
software concerns did arise in connection with the hardwareproblems.

• The selected network cards were running relatively hot. A measure-

B.6 Experiences and Lessons Learned 137

ment with an IR thermometer revealed a surface temperature of around
65C. Estimating the expected lifetime of semiconductors isdifficult
without exact manufacturer information. One possible generic ap-
proach is to use a lifetime of 30 years at 25C and to derate by a factor
of 2 for every 10C more. This would give 2-3 years expected lifetime
for the cards. Since the cards were the fastest reasonably priced cards
available at the design time of the cluster and since the manufacturer
(Netgear) gave 5 years warranty, we decided to use the cards anyway.

Not unexpectedly, we lost the first card after about 2 years and it was
promptly replaced under warranty. After 3 years we had lost alot more
cards and Netgear never replaced them. To resolve the issue,we had to
replace all networking cards with a different brand.

A similar issue arose with the 24-port Gigabit Ethernet switch, also
manufactured by Netgear. It failed after 2 years with defective ports.
The replacement failed again 1.5 years later, and it turned out to be
nearly impossible to get a warranty replacement. When it arrived after
several months, it was defective. To resolve the, issue we had to replace
the switch with a different brand.

These problems lead to packet loss and link loss issues in thecomputer
cluster. One main effect was that remote volumes mounted viaNFS
would sometimes become unresponsive and hosts needed to be manu-
ally rebooted. This issue was resolved by using NFS over TCP,instead
of the default UDP. In addition, we replaced static NFS mounts with
automounted ones.

• We encountered failure of two PSUs during the cluster’s lifetime. Con-
sidering that 24 machines were running 24/7 for about 3.5 years, this is
an acceptable rate.

• We were hit by the bad capacitor problem [3, 14], now sometimes
known as the “Capacitor plague” in one server mainboard. Themanu-
facturer sent us a mainboard with the same bad capacitors as replace-
ment and we had to fix the board ourselves with quality components. It
performed fine afterwards for several more years.

• We did not experience any disk-crashes, besides a small number in
one shipment where the packaging had been destroyed by the Swiss
postal service. All problems were noted before data loss occurred due
to regular S.M.A.R.T. [99] monitoring.

138 B Data Processing Infrastructure

• We had one RAM module (out of 44) with a “weak bit”, i.e. a bit
that occasionally lost its state. It took significant effortto find the
affected module, also because of the automatic process migration of
Open Mosix. Applications would typically not crash, but report wrong
results with the frequency of one error per several days of computing
time. This problem contributed to the decision to abandon OpenMosix
and to operate the cluster without process migration between its nodes.

The main lesson learned is that handling large volumes of data requires
extra care. Data corruption can be introduced in RAM, in busses, in unreliable
CPUs and in other places. It is necessary to expect occasional corruption and
to be able to deal with it. Since our data on tape is stored compressed and the
compressor has its own checksum mechanism, recognising data corruption
introduced in long-term storage is relatively easy but computationally inten-
sive. When moving data, it is highly advisable to use additional checksums,
for example created via themd5sum tool, to compare the data at the source
and the destination, before deleting the data at the source.The checksums
should then be kept at the destination to allow easy checkingof the files, in
case errors turn up later. This measure not only improves data integrity, it
also helpts to isolate the source of any corruption and to facilitate diagnosis
and repair, if the corruption event is repeatable.

Overall the Scylla cluster performed well and proved adequate to its task.
On the performance side, reading compressed NetFlow data from a file server
worked well for up to 6-8 nodes reading in parallel, depending on the actual
processing done. When reading uncompressed data, one node could saturate
a file server, which is not unexpected. Distributing larger data sets to the
local disks in the nodes was possible with low effort, using data-distribution
scripts that can run overnight. Reading data to be analysed from the local
disks provided satisfactory I/O bandwidth even for large-scale investigations.

Appendix C

Data Capturing System

As part of this thesis, we built a data-capturing system, that collects and stores
flow-level traffic data from the SWITCH [6] network. The data format used
is Cisco NetFlow v5 [9,28,29].

C.1 Objectives

The primary objective of the NetFlow data capturing system is to record the
NetFlow packet streams exported by the SWITCH border routers(see below)
and to transfer the captured data to long-term storage. As a secondary objec-
tive, the data capturing system of the DDoSVax project stores the last four
to six weeks of captured data on disk for easy access. Since weonly have
limited human resources for the operation of the capturing system, primary
design goals were reliability and fault-tolerance. As a consequence, the main
paradigms used are simplicity and automated fault detection and recovery.
An additional complication is that we could not place a host dedicated to data
capturing in the SWITCH network and the packet capturing processes have
to run with user privileges on a Linux host operated by SWITCH.

C.1.1 Data Flow

The basic data-flow through the capturing system is shown in Figure C.1.
The four SWITCH border routers export their data in two streams of NetFlow
version 5 [9, 28, 29] UDP packets. One stream is the combined data export

140 C Data Capturing System

SWITCH
accounting

ezmp1 ezmp2

Dual−PIII
1.4GHz

HDD
55GB

aw3

Athlon XP
2200+

HDD
600GB

jabba

Sun E3000
with

IBM 3494
tape robot

UDP data UDP data 4 files/h
compressed

4 files/h

Infrastructure
ETHZ

SWITCH

GbE FE FEGbE

GbE

Cluster
’’Scylla’’

DDoSVax Project

2 * 400kiB/s 2 * 400kiB/s

Figure C.1: Capturing system data flow

of three routers (swiCE1 , swiCE2 andswiBA2) mixed together, the other is
the data export fromswiIX1 . In the SWITCH topology map (Figure C.2)
swiCE1 andswiCE2 are on the left (marked together asCE). These Routers
provide connectivity to CERN, the CERN Internet eXchange Point, Global
Crossing, Level 3 and the GEANT2 research network. On top in Figure C.2
is routerswiBA2 (markedBA), which connects the University of Basel, the
BelWue and the Swiss Internet eXchange point. On the top, right side, there
is routerswiIX1 (markedIX , which provides connectivity to Telia, the Swiss
Internet eXchange point, and the Telehouse Internet eXchange point.

Two data streams arrive via Gigabit Ethernet at the hostezmp1 (running
Linux). ezmp1 replicates the streams on a packet level. One copy is sent to
the hostezmp2. The DDoSVax NetFlow packet capturers runs onezmp2 as a
set of user space processes. They collect the incoming UDP packets into one
packet data file and one metadata file per hour and data stream.The metadata
contains the sender IP address and a timestamp for each captured packet. It
is needed to determine which router sent a specific NetFlow packet, since
NetFlow v5 does not identify the exporting router.

The data files are then transferred to the Linux hostaw3, which resides
in the ETH network and is operated by the DDoSVax project. Thetransfer
itself is initiated byaw3 using the secure shellssh and the secure copy com-
mandscp (both from the OpenSSH project [78]). The transferred files are
compressed and copied to the tape libraryjabba . Jabba runs Solaris and
is operated by the Information Technology and Electrical Engineering De-

C.1 Objectives 141

Figure C.2: SWITCH topology (weather map) from www.switch.ch

partment (D-ITET) of ETH. In addition, a copy of the last 4 to 6weeks of
compressed data is kept onaw3 for quick access from the computer cluster
“Scylla”. “Scylla” forms the secure NetFlow processing infrastructure of the
DDoSVax project. See Appendix B for a description of the “Scylla” cluster.

C.1.2 Data Properties

The captured data consists of unprocessed NetFlow v5 packets. The data
export from the SWITCH routers is bursty and can reach gigabitspeeds. Af-
ter some modifications to the original SWITCH NetFlow transfer system (see
Section C.3), the DDoSVax capturing system experiences only very little data
loss. In addition, the SWITCH routers suffer very little flow loss. As a conse-
quence, the captured data forms an accurate and complete description of the
SWITCH network border traffic.

In order to understand the data handling effort needed, we measured typ-
ical NetFlow data volumes the SWITCH border routers generate. The fig-
ures given in Table C.1 are based on the data captured in the second week
of January, 2004. The given values represent a typical situation. They re-

142 C Data Capturing System

Raw NetFlow Packets Compressed withbzip2 -1
1 hour 2.1 GiB 730 MiB
1 day 50 GiB 17 GiB
1 month 1.5 TiB 510 GiB
1 year 18 TiB 6.1 TiB

Table C.1: Typical SWITCH data volume (scaled, start of 2004)

Compressor Compressed Compression Decompression
Size CPU Time CPU Time

bzip2 660 MiB 1100 s 410 s
bzip2 -1 730 MiB 730 s 200 s
gzip 810 MiB 280 s 32 s
lzo 1.1 GiB 41 s 13 s
no compression 2.1 GiB 0 s 0 s

Table C.2: Compressor comparison (1h data, Athlon XP 2800+ CPU)

mained fairly constant during the observation period (start of 2003 until start
of 2006). The observed volumes are scaled to different time intervals to pro-
vide an overview of the date volumes to be expected.

C.2 Compression and Long-Term Storage

Since we have space constraints for data storage, all data iscompressed before
being transferred onto long-term storage. Originally datawas compressed
usingbzip2 with default parameters. However, during some network events,
most notably the Nachi.a worm, with its massive increase in observed flow
numbers due to ICMP target probing, the system load due to compression
became too high and had to be reduced. Currently,bzip2 with parameter-1
is used.

We considered the following compressors (all of which are available un-
der the GNU public license):

• bzip2 [24], a modern compressor based on the Burrows-Wheeler block
sorting algorithm and Huffman coding. It compresses well, but is slow.

C.2 Compression and Long-Term Storage 143

• gzip [50] the GNU zip compressor. It is based on the Lempel-Ziv
method. Its performance and resource requirements are average in all
regards.

• lzo [66] the Lempel-Ziv-Oberhumer compressor. This compressor
family is extremely fast at the cost of compression ratio.

Table C.2 gives the expected compression performance and CPU times
to be expected when processing typical data from the SWITCH network.
Main memory consumption is low for all compressors (below 10MiB) and
not listed. The data sample is the same as in Table C.1. Typically, data analy-
sis will involve decompression but not compression. Compression is done by
the capturing system. The CPU load values due to compressionare given as
reference values for capturing system design.

One impact of using a CPU intensive compressor is that most measure-
ments done on stored data in the DDoSVax project are CPU bound. Without
compression, NetFlow data analysis is usually I/O bound, i.e. reading data
from disk is slower than processing it. Withbzip2 compression, a single
file server can deliver data to 8. . .10 nodes doing analysis in the “Scylla”
computer cluster, before I/O becomes the limiting factor. (See Appendix
B for a discussion of the characteristics of the DDoSVax computer cluster
“Scylla”.) As a consequence, a positive effect on software creation was ob-
served, namely a weaker tendency to optimise analysis algorithms for speed
prematurely. Decompression of an hour of data takes around 200 CPU sec-
onds. Optimising analysis algorithms to perform better than this number is
subject to fast diminishing returns. This curbs the often observed implemen-
tors impulse to write highly optimised code, that hard to modify and main-
tain, too early in a project. Observed positive effects include cleaner software
structure, higher willingness to work with clean interfaces and checked con-
tainers and generally a higher willingness to experiment, since implementa-
tion work becomes easier and less time-consuming.

If very fast repeated processing of the same data is needed, decompression
and storage of the raw data on disks local to the Scylla nodes is possible.
Experience has shown that this is rarely done in the DDoSVax project. Using
more cluster nodes is less work than writing more optimised code, and seems
to be conceptually and administratively easy to do for our data users. It should
be taken into account, however, that most DDoSVax analysis work is done by
sequentially processing the data in a set of hour files in order to obtain a
global view of some data characteristics. For more forensics-oriented work,

144 C Data Capturing System

i.e. following the activities of a single or a smaller set of hosts in detail, a
different approach to data storage would be advisable. It should also be noted
that our agreement with SWITCH does not allow us to do any forensics work
without explicit permission by SWITCH for each individual case.

Performance is not the only consideration for compressor selection. An
additional question is how much data is lost in the case of biterrors intro-
duced after compression. With the processed data volume this becomes a
concern. Thebzip2 compressor loses one raw data block (100 kiB ... 900
kiB, depending on the selected compression parameter) per bit-error. May
other compressors cannot recover any data following a bit error. In the course
of the DDoSVax project, 5 bit-errors were found in the storeddata for the
year 2004. This indicates that a different compressor choice would also have
been reasonable with regard to bit-error behaviour, at least as long as data is
stored in relatively small files.

C.3 Scalability, Bottlenecks

C.3.1 Network and Operating system

The primary capturing bottleneck that can cause packet lossis the CPU sched-
uler on the capturing system. When data is received, the socket-buffers start
to fill up. If the scheduler takes too long to assign the CPU to the capturing
process, the socket buffer becomes full and the kernel starts to drop packets.

When we started the DDoSVax project, SWITCH experienced some data
loss in its NetFlow export streams, in the order of up to several percent. We
found that the capturing and replication was done with the default socket
buffer size of 64kiB. At the same time, the routers exported data in bursts that
could theoretically reach gigabit-speed and could fill up the socket buffers in
a bit more than one millisecond. Our measurements (Table C.3) show real
data bursts of up to 320kiB in a 10ms window. Due to kernel restrictions
on the host capturing the UDP NetFlow data stream, we could not obtain
measurements for shorter intervals. It is quite possible that the maximum
observed speed for a 10ms interval is not the top export speed, since shorten-
ing the measurement interval leads to significant burst speed increase for all
measurements given in the table.

We observed idle times of up to 2 seconds between the bursts. Due to the
10ms scheduling interval of the Linux kernel on the host capturing the Net-
Flow packets, the socket buffers could frequently not be emptied fast enough

C.3 Scalability, Bottlenecks 145

and packets were lost. To solve this problem, the socket buffer size onezmp1
andezmp2 was increased to 2MiB. This is enough to contain several seconds
of data and thus solved the loss problem completely.

C.3.2 CPU and Main Memory

The CPU requirements of the capturing system are low. In December 2005,
we observed a total CPU load of about 2.4% with an Intel Xeon 3.60GHz
CPU. Since the capturing system runs on a host with two of these CPUs, the
overall CPU load is about 1.2%. Main memory consumption is low as well.
Besides the socket buffers, the main consumer is the buffer cache used for
disk writes. Neither are critical in our set-up.

C.3.3 Disk Storage Speed

Since we capture only two data streams on a lightly loaded system, we receive
disk write performance comparable to the linear write performance of the
filesystem. The capturing system uses a fast SCSI disk. Even slower 7200
rpm ATA disks can write in excess of 10MiB per second in realistic scenarios
today. This exceeds the NetFlow data delivery speed significantly and hence
disk storage speed is not a significant concern in the DDoSVaxcapturing set-
up.

C.3.4 Scaling Up Observations from SWITCH Data

Data export characteristics are not available to us from fast routers other than
those in the SWITCH network. We can only speculate about scalability based
on scaled-up figures derived from our measurements. The obtained numbers
can serve as a first approximation and give hints on how to evaluate a concrete
capturing situation.

We assume that the user-space capturing process can remove data from
the socket-buffer much faster than it arrives as soon as the process has the
CPU and gets executed. From the observed CPU consumption of the Perl-
script used for data capturing, this is a realistic assumption.

Table C.3 gives the maximum export speed for the most bursty NetFlow
data stream from the SWITCH routers (swiIX1), versus observation window
length. Window shift is a uniform 10ms. The measurements were taken over
two weeks of December 2005 (5th - 19th). Figure C.3 gives the minimum

146 C Data Capturing System

buffer sizes required versus the maximum capturing processreaction times
(i.e. maximum scheduling delay). The long-term average data rate for the
observation interval was 150kiB/s for the observed router.

Window 10 ms 100 ms 1 s 10 s 100 s
Data 320 kiB 1.1 MiB 2.0 MiB 15 MiB 61 MiB
Speed 32 MiB/s 11 MiB/s 2 MiB/s 1.5 MiB/s 0.61 MiB/s

Table C.3: Maximum export burst of swiIX1 (5.12.2005-18.12.2005)

Note that these observations cannot directly be used to scale the given fig-
ures for another capturing situation, since the maximum burst speed is only
weakly dependent on the average data rate, but strongly dependent on the net-
work and the router buffer memory and export algorithm. As a consequence,
these figures may change completely if a different router type is used. Our
observations can give a general idea about “reasonable” figures, but are no
substitute for individual and careful evaluation of each capturing situation.

100MB

10MB

1MB

100kB
100s10s1s0.1s10ms

R
eq

ui
re

d
bu

ffe
r

si
ze

Maximum CPU scheduling delay

Figure C.3: Minimal needed socket buffer size vs. maximum CPU scheduling
delay (150kiB/s average data volume)

C.4 Fault Tolerance 147

C.3.5 Performance Improvement

The most important bottleneck is the CPU scheduler latency,together with
the socket buffer capacity. It is possible to use a real-timecapable scheduler
or a real-time kernel extension to reduce the maximum time that the socket
buffers must hold data before it is processed. The main socket buffer func-
tionality for de-bursting moves then to a buffer in the capturing software or to
the filesystem buffer-cache. The primary advantage is that the buffer can be
made larger than the current kernel-limit of 16MiB. The maindisadvantage
of a real-time extension is that the implementation of the capturing software
becomes more complicated and error-prone. We believe that using a lightly
loaded system and generously sized socket buffers is the preferable solution,
except when the available maximum socket-buffer size is toosmall to ensure
reliable NetFlow packet capturing.

C.4 Fault Tolerance

Because the DDoSVax NetFlow capturing system runs around the clock with-
out human supervision, the system needs to recover from mostproblems with-
out manual intervention. At the same time, problems should be reported to the
system administrator with reasonable delay. All components are kept simple
in order to make design and implementation errors less likely.

The error recovery mechanisms on the data-capturing host (aw3), uses a
2-layer supervision mechanism. The individual componentsof the mecha-
nism and their relation are shown in Figure C.4. The capturing software itself
takes NetFlow packets and writes them into files. It does nothing else in or-
der to be as simple as possible. The first fault tolerance layer consists of a
supervisor process, implemented as a Python script with a single loop that is
run once every minute. At the beginning of each loop a timestamp is written
to disk. The supervisor checks periodically that the capturer processes are
still running and that a minimum of free disk-space is left. If a capturer is
not running, it is restarted and an email notification is sent. If free disk space
gets low, an email is sent to the administrator, but no mitigation is done, since
nothing can be done without manual intervention.

The supervisor is in turn monitored by acron -job, i.e. cron provides
basic reliable and periodic execution service. Thecron service was chosen
because even if thecron -job hangs or crashes, it will be run again at the next
preselected time. Thecron -job checks periodically that the supervisor still

148 C Data Capturing System

Cron−Job

(linear, no loops)

Supervisor

(demon−style)

Capturer
(daemon style)

Is supervisor process present?
Does main loop in supervisor run?

Is capturer process present?

Failed: Kill and restart supervisor

Failed: Kill and restart capturer

Failed: Alert administrator
Is there enough disk−space left?

packet stream

NetFlow NetFlow Packets

in hourly files

Figure C.4: Fault tolerance mechanism on flow capturer

runs in exactly one instance. It also checks whether the mainloop of the
supervisor is still running by looking at the loop timestampon disk. If either
test fails, the supervisor is restarted and an email notification is sent. The
cron -job itself is a Phyton script that has a very simple linear structure, i.e.
does not contain any loops. It performs very few and only simple operations
in order to provide maximum reliability. After the tests arefinished, the script
exits and is started again bycron at the beginning of the next 10 minute
interval.

A third monitoring mechanism is implemented on the host thatpulls the
data into the ETH network (aw3). The transfer to ETH, compression and
transfer to tape storage is done hourly with acron -executed script. All data
files, that were not modified for more than 66 minutes, are transferred to ETH
and deleted onezmp2. The script tests whether there are enough hour-files,
whether they have reasonable size and whether they actuallyhave a minimum
number of flow-records in them. Transferred files are checkedfor correct

C.5 Privacy Concerns and Collaboration Possibilities 149

sizes. The script also checks whether the system clock on thecapturing host
is running correctly, since inaccuracies could lead to transfer and deletion of
not yet closed hourly files. In case of deviations from pre-set limits, an email
is sent.

Since the whole software installation onaw3 consists of a single script
called from acron -job and because the host requirements are limited to a
standard PC with enough storage space,aw3 could be replaced with mini-
mal effort in case of hardware problems. In addition, a redundant installation
where a secondary transfer host pulls files from the primary capturing system
on ezmp2 if they have been there for a longer time (several hours) is easy to
establish. Replicating the software installation onaw3 and changing one pa-
rameter in the transfer script is enough. The primary transfer system removes
all data files fromezmp2 within less than three hours (taking into account
some time for the actual transfer). The redundant transfer system could then
be set to pull only files modified at three hours old fromezmp2 and would
activate whenaw3 fails.

For the data transfer from SWITCH toaw3 and, after compression, on-
wards to tape storage (on thejabba system), there are two safety mecha-
nisms. Every file is checked whether it has the correct file size after transfer.
Files too small can be observed when transfers are interrupted. Files too large
can be observed with filesystem problems on the tape library.In this case,
the file size is rounded up to the next full block size, but the file is empty. As
second test, all files are tested whether they are correctly structured.

There is space for about half a day of data storage on the data capturing
host (in caseaw3 becomes unreachable or unavailable). In additionaw3 stores
the last 4-6 weeks of data locally, so that outages of thejabba tape system
will not result in data loss. So far we have observed one unannounced outage
of the ETH network that prohibited transfer from the SWITCH network to
aw3 and lasted 6 hours. We have experienced unannouncedjabba outages
of up to a day and announced outages of several days during upgrades of the
tape library hardware. Neither of these problems caused anydata loss.

C.5 Privacy Concerns and Collaboration
Possibilities

Swiss privacy laws do not allow collection and storage of network payload
data and exceptions are only made when it is absolutely necessary for net-

150 C Data Capturing System

work maintenance and operation. Even then the data has to be deleted as
soon as it is not needed anymore or after a very short time. Allcaptured
data is to be treated as confidential and misuse or publication can be subject
to criminal penalties. Identifying individual users and inspection of the pay-
loads of their data requires either a court order or permission of the sender
or receiver of the data. To a limited degree this can be done inemployment
contracts, but employers cannot suspend privacy completely that way. The
exact legal situation with regard to data payloads is still in flux. A summary
regarding the present situation in the workplace can be found in [103].

Since we are only capturing flow level data and not payloads, the legal
restrictions are lighter. The data still needs to be kept confidential, since
there might be possibilities to identify individual behaviour. We also have
a contractual agreement with SWITCH, that does prevent us from identifying
behaviour of individuals and publishing any data that couldbe sensitive with
regard to privacy, such as unanonymised IP addresses. Thereis one valid
possibility to work with data attributed to a user: Individuals can identify and
inspect the data they sent or received over the network.

The NetFlow data archive and processing infrastructure is used in the
DDoSVax project to support research activities, such as this thesis. Access
is restricted to individuals that have a need to access the data. Researchers
are already bound to secrecy by their contract. Students doing thesis work
for semester- and master-theses have to sign a confidentiality agreement, and
are reminded that they could be personally subject to criminal prosecution if
they misuse the data. They are also disallowed from keeping any of the data
or possibly privacy relevant results in their possession after their thesis work
is finished. thesis data is instead archived by the DDoSVax project.

Publications and student theses have to be inspected by the DDoSVax core
staff before they can be published. If there is even a remote possibility of a
privacy violation, SWITCH has to be consulted as well and has to clear the
publication.

In order to allow new research projects on the DDoSVax NetFlow data
archive and to create the possibility of scientific collaboration based on the
data, the contract between the CSG (Communication Systems Group, the
DDoSVax project is a research activity of the CSG) at ETH and SWITCH
provides the possibility of submitting research proposalsto a review board
that is jointly formed by the CSG and SWITCH. This review boardhas the
primary obligation to ensure that privacy laws and confidentiality of the Net-
Flow data is kept. Research proposals must describe how thisis ensured and

C.6 Lessons Learned 151

the review board may impose additional restrictions or reject project propos-
als. A specific concern is data access given to researchers not affiliated with
ETH or not subject to swiss privacy laws. In case of such collaborations,
strong contractual agreements might be required and requested by the review
board. An other option would be to limit the access of the external researchers
to anonymised data and results. This option would still allow meaningful col-
laboration where, e.g., algorithms could be developed jointly and then tested
and evaluated by DDoSVax or CSG staff members.

C.6 Lessons Learned

We now discuss our experiences made with the capturing system and its de-
sign while operating it for several years.

• The increased socket buffer size of 2 MiB was large enough forthe
SWITCH data and we observed no significant loss of data in transit or
capturing after the socket buffers were enlarged.

• Capturing the data into hour-files did not cause any significant prob-
lems in processing or storage. However, it turned out that the original
file-boundary selection method, that just counted 3600 seconds before
starting a new file, had a small but noticeable skew compared to real-
time. While not a problem when operating the capturing systemfor
a month or so, the accumulated skew became a concern after longer
operation periods, since it made finding specific data more difficult.
The original capturing script was therefore successfully upgraded with
a time-synchronisation mechanism that can vary the length of a cap-
tured file by up to two minutes in order to bring its boundariescloser to
the hour boundaries on the system clock. The two-minute limit allows
resynchronisation after a restart within 15 hours. while keeping the files
still approximately one hour long. The latter is convenient, because
we frequently experienced situations where the system-clock onezmp2
was off by an arbitrary amount of time after reboot, but was corrected
within a few hours. This was due to such factors, as for example an un-
reachable NTP host and other issues outside of our control. With fast
synchronisation, this situation could lead to files that contain between
a few seconds and up to nearly two hours of data. These files would
trigger the alerting mechanisms that monitor file counts, file sizes and

152 C Data Capturing System

flow counts, which in turn would cause a need for manual inspection.
With the used slow convergence method the characteristics of the data
files stay in the normal parameter range, even when resyncingto a new
clock setting. Directly using the system clock as the time base was also
considered, but rejected because it would again cause problems when
the clock on the capturing host was set to a wrong value. The syn-
chronisation mechanism has run accurately and without problems for
several years by now.

• Whenever error messages are sent automatically via email, itis im-
portant to have a rate-limiting mechanism. Without rate-limiting un-
intended DoS attacks on the capturing system administrators email ac-
count are a real possibility.

• In order to verify that a data file has been transferred from orto a re-
mote system correctly, we found it sufficient to compare the file sizes.
Errors we found included files both too small and too large as aresult
of transfer and file-system problems. A data comparison using check-
sums would find bit-errors, but would cause significant additional I/O
load on the involved hosts. The primary concern is bit-errors in the
compressed data, since each leads to a loss of one data-blockof about
100kB (raw size). Given the low number of observed bit-errors in com-
pressed data (about 5 in the stored data for 2004), use of checksums for
transfer would not have improved stored data quality significantly.

Bit errors in the raw data can happen in the capturing chain upto the
point when the data is compressed. Note that these errors would only
impact a single flow record in most cases and at maximum a com-
plete flow packet. We do not know the number of bit errors in theraw
data, but can estimate an upper bound for the possible randomly placed
errors. Finding non-randomly placed errors introduced by the router
would likely need some kind of plausibility test, which is rather infea-
sible in our set-up. Since the 16 bit NetFlow version field is checked
by our NetFlow processing library on each packet read, we know that
very few of these fields are corrupted. In the whole 2004 data we saw
less than 10 packets with incorrect version fields that were potential
bit-errors. Scaling this linearly up (by assuming the errorposition is
random in the packet) gives less than 7700 packets in the whole of
2004 with bit errors introduced in the raw data, as the typical NetFlow
packet in the SWITCH network is around 1440 bytes long. We believe

C.6 Lessons Learned 153

that these numbers do not justify adding checksums to the transfer of
the raw data. In addition, such checksums would not help against errors
introduced in the routers, during network transfer and in the capturing
host before the data is written to disk.

Curriculum Vitae

Arno Wagner, Dipl. Inform.
arno@wagner.name
Born January 7th, 1969
Citizen of Austria

Education
2000 - 2008 ETH Z̈urich, PhD Studies in Network Security
2003 ISC2 CISSP certificate
1990 - 1996 University of Karlsruhe, Germany,

Diploma (M.S.) in Computer Science
1989 Abitur (German general university entrance qualification),

Staudinger-Gesamtschule Freiburg, Germany

Work Experience
2006 - today Lecturer, ETH Z̈urich
2000 - 2006 ETH Z̈urich, research and teaching assistant
1997 - 2000 Researcher at the Institute for Telematics, Trier, Germany
1996 - 1997 University of Karlsruhe, Teaching assistant

Honours
2006 Best paper award at ICISP 2006 for“Flow-Based

Identification of P2P Heavy-Hitters”
2005 Best paper award at WETICE 2005 for“Entropy Based

Worm and Anomaly Detection in Fast IP Networks”
2004 Best paper award at WETICE 2004 for“An Economic

Damage Model for Large-Scale Internet Attacks”
1997 Award of the sponsor’s association of the FZIfor exceptional

performance in the Diploma Exam in Computer Science

Document License
Unmodified distribution of this work for free is allowed. Forderived work
and other uses, please consult the license below or contact the author.
Author address:

Email: arno@wagner.name or arno.wagner@acm.org
WWW: http://www.tansi.org

Creative Commons - Attribution-NonCommercial-ShareAlike 3.0
License URL:
http://creativecommons.org/licenses/by-nc-sa/3.0/le galcode

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THISCRE-
ATIVE COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PRO-
TECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW
IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT
AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT
THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSORGRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE
OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. “Adaptation” means a work based upon the Work, or upon the Work and other
pre-existing works, such as a translation, adaptation, derivative work, arrangement
of music or other alterations of a literary or artistic work, or phonogram or perfor-
mance and includes cinematographic adaptations or any other form in which the
Work may be recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a Collection will not
be considered an Adaptation for the purpose of this License.For the avoidance
of doubt, where the Work is a musical work, performance or phonogram, the syn-
chronization of the Work in timed-relation with a moving image “synching”) will
be considered an Adaptation for the purpose of this License.

156 Document License

b. “Collection” means a collection of literary or artistic works, such as encyclope-
dias and anthologies, or performances, phonograms or broadcasts, or other works
or subject matter other than works listed in Section 1(g) below, which, by reason
of the selection and arrangement of their contents, constitute intellectual creations,
in which the Work is included in its entirety in unmodified formalong with one
or more other contributions, each constituting separate andindependent works in
themselves, which together are assembled into a collective whole. A work that
constitutes a Collection will not be considered an Adaptation (as defined above)
for the purposes of this License.

c. “Distribute” means to make available to the public the original and copies ofthe
Work or Adaptation, as appropriate, through sale or other transfer of ownership.

e. “Licensor” means the individual, individuals, entity or entities that offer(s) the
Work under the terms of this License.

f. “Original Author” means, in the case of a literary or artistic work, the individ-
ual, individuals, entity or entities who created the Work orif no individual or
entity can be identified, the publisher; and in addition (i) in the case of a perfor-
mance the actors, singers, musicians, dancers, and other persons who act, sing,
deliver, declaim, play in, interpret or otherwise perform literary or artistic works
or expressions of folklore; (ii) in the case of a phonogram the producer being the
person or legal entity who first fixes the sounds of a performance or other sounds;
and, (iii) in the case of broadcasts, the organization that transmits the broadcast.

g. “Work” means the literary and/or artistic work offered under the terms of this
License including without limitation any production in the literary, scientific and
artistic domain, whatever may be the mode or form of its expression including
digital form, such as a book, pamphlet and other writing; a lecture, address, ser-
mon or other work of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical composition with
or without words; a cinematographic work to which are assimilated works ex-
pressed by a process analogous to cinematography; a work of drawing, painting,
architecture, sculpture, engraving or lithography; a photographic work to which
are assimilated works expressed by a process analogous to photography; a work
of applied art; an illustration, map, plan, sketch or three-dimensional work relative
to geography, topography, architecture or science; a performance; a broadcast; a
phonogram; a compilation of data to the extent it is protected as a copyrightable
work; or a work performed by a variety or circus performer to theextent it is not
otherwise considered a literary or artistic work.

h. “You” means an individual or entity exercising rights under this License who has
not previously violated the terms of this License with respect to the Work, or who
has received express permission from the Licensor to exercise rights under this
License despite a previous violation.

i. “Publicly Perform” means to perform public recitations of the Work and to com-
municate to the public those public recitations, by any means or process, including
by wire or wireless means or public digital performances; to make available to the
public Works in such a way that members of the public may access these Works
from a place and at a place individually chosen by them; to perform the Work to
the public by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to broadcast
and rebroadcast the Work by any means including signs, soundsor images.

Document License 157

j. “Reproduce” means to make copies of the Work by any means including without
limitation by sound or visual recordings and the right of fixation and reproducing
fixations of the Work, including storage of a protected performance or phonogram
in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any
uses free from copyright or rights arising from limitations or exceptions that are provided
for in connection with the copyright protection under copyright law or other applicable
laws.

3. License Grant. Subject to the terms and conditions of this License, Licensorhereby
grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the
applicable copyright) license to exercise the rights in theWork as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and
to Reproduce the Work as incorporated in the Collections;

b. to create and Reproduce Adaptations provided that any such Adaptation, including
any translation in any medium, takes reasonable steps to clearly label, demarcate
or otherwise identify that changes were made to the original Work. For example,
a translation could be marked “The original work was translated from English to
Spanish,” or a modification could indicate “The original workhas been modified.”;

c. to Distribute and Publicly Perform the Work including as incorporated in Collec-
tions; and,

d. to Distribute and Publicly Perform Adaptations.

The above rights may be exercised in all media and formats whether now known or
hereafter devised. The above rights include the right to makesuch modifications as are
technically necessary to exercise the rights in other media and formats. Subject to Section
8(f), all rights not expressly granted by Licensor are hereby reserved, including but not
limited to the rights described in Section 4(e).

4. Restrictions. The license granted in Section 3 above is expressly made subject to and
limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this
License. You must include a copy of, or the Uniform Resource Identifier (URI)
for, this License with every copy of the Work You Distribute or Publicly Perform.
You may not offer or impose any terms on the Work that restrict theterms of this
License or the ability of the recipient of the Work to exercise the rights granted to
that recipient under the terms of the License. You may not sublicense the Work.
You must keep intact all notices that refer to this License andto the disclaimer of
warranties with every copy of the Work You Distribute or Publicly Perform. When
You Distribute or Publicly Perform the Work, You may not imposeany effective
technological measures on the Work that restrict the abilityof a recipient of the
Work from You to exercise the rights granted to that recipient under the terms of
the License. This Section 4(a) applies to the Work as incorporated in a Collection,
but this does not require the Collection apart from the Work itself to be made
subject to the terms of this License. If You create a Collection, upon notice from
any Licensor You must, to the extent practicable, remove from the Collection any
credit as required by Section 4(d), as requested. If You create an Adaptation, upon
notice from any Licensor You must, to the extent practicable,remove from the
Adaptation any credit as required by Section 4(d), as requested.

158 Document License

b. You may Distribute or Publicly Perform an Adaptation only under: (i) the terms
of this License; (ii) a later version of this License with thesame License Elements
as this License; (iii) a Creative Commons jurisdiction license (either this or a later
license version) that contains the same License Elements as this License (e.g.,
Attribution-NonCommercial-ShareAlike 3.0 US) (“Applicable License”). You
must include a copy of, or the URI, for Applicable License withevery copy of
each Adaptation You Distribute or Publicly Perform. You may not offer or impose
any terms on the Adaptation that restrict the terms of the Applicable License or
the ability of the recipient of the Adaptation to exercise the rights granted to that
recipient under the terms of the Applicable License. You must keep intact all no-
tices that refer to the Applicable License and to the disclaimer of warranties with
every copy of the Work as included in the Adaptation You Distribute or Publicly
Perform. When You Distribute or Publicly Perform the Adaptation, You may not
impose any effective technological measures on the Adaptation that restrict the
ability of a recipient of the Adaptation from You to exercisethe rights granted to
that recipient under the terms of the Applicable License. This Section 4(b) applies
to the Adaptation as incorporated in a Collection, but this does not require the
Collection apart from the Adaptation itself to be made subject to the terms of the
Applicable License.

c. You may not exercise any of the rights granted to You in Section 3 above in any
manner that is primarily intended for or directed toward commercial advantage or
private monetary compensation. The exchange of the Work for other copyrighted
works by means of digital file-sharing or otherwise shall not be considered to be
intended for or directed toward commercial advantage or private monetary com-
pensation, provided there is no payment of any monetary compensation in con-
nection with the exchange of copyrighted works.

d. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections,
You must, unless a request has been made pursuant to Section 4(a), keep intact all
copyright notices for the Work and provide, reasonable to the medium or means
You are utilizing: (i) the name of the Original Author (or pseudonym, if applica-
ble) if supplied, and/or if the Original Author and/or Licensor designate another
party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution
(“Attribution Parties”) in Licensor’s copyright notice, terms of service or by other
reasonable means, the name of such party or parties; (ii) the title of the Work if
supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI doesnot refer to the
copyright notice or licensing information for the Work; and,(iv) consistent with
Section 3(b), in the case of an Adaptation, a credit identifying the use of the Work
in the Adaptation (e.g., “French translation of the Work by Original Author,” or
“Screenplay based on original Work by Original Author”). The credit required
by this Section 4(d) may be implemented in any reasonable manner;provided,
however, that in the case of a Adaptation or Collection, at a minimum such credit
will appear, if a credit for all contributing authors of the Adaptation or Collec-
tion appears, then as part of these credits and in a manner at least as prominent
as the credits for the other contributing authors. For the avoidance of doubt, You
may only use the credit required by this Section for the purpose of attribution in
the manner set out above and, by exercising Your rights under this License, You
may not implicitly or explicitly assert or imply any connectionwith, sponsorship
or endorsement by the Original Author, Licensor and/or Attribution Parties, as
appropriate, of You or Your use of the Work, without the separate, express prior
written permission of the Original Author, Licensor and/or Attribution Parties.

Document License 159

e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes.In those jurisdictions in
which the right to collect royalties through any statutory or compulsory li-
censing scheme cannot be waived, the Licensor reserves the exclusive right
to collect such royalties for any exercise by You of the rights granted under
this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which
the right to collect royalties through any statutory or compulsory licensing
scheme can be waived, the Licensor reserves the exclusive right to collect
such royalties for any exercise by You of the rights granted under this Li-
cense if Your exercise of such rights is for a purpose or use which is oth-
erwise than noncommercial as permitted under Section 4(c) and otherwise
waives the right to collect royalties through any statutoryor compulsory li-
censing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect royal-
ties, whether individually or, in the event that the Licensor is a member of a
collecting society that administers voluntary licensing schemes, via that so-
ciety, from any exercise by You of the rights granted under this License that
is for a purpose or use which is otherwise than noncommercial aspermitted
under Section 4(c).

f. Except as otherwise agreed in writing by the Licensor or asmay be otherwise
permitted by applicable law, if You Reproduce, Distribute orPublicly Perform the
Work either by itself or as part of any Adaptations or Collections, You must not
distort, mutilate, modify or take other derogatory action in relation to the Work
which would be prejudicial to the Original Author’s honor orreputation. Licensor
agrees that in those jurisdictions (e.g. Japan), in which any exercise of the right
granted in Section 3(b) of this License (the right to make Adaptations) would
be deemed to be a distortion, mutilation, modification or other derogatory action
prejudicial to the Original Author’s honor and reputation,the Licensor will waive
or not assert, as appropriate, this Section, to the fullest extent permitted by the
applicable national law, to enable You to reasonably exercise Your right under
Section 3(b) of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRIT-
ING AND TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, LI-
CENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRAN-
TIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR
NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLU-
SION OF IMPLIED WARRANTIES, SO THIS EXCLUSION MAY NOT APPLY TO
YOU.

6. Limitation on Liability.
EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT
WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAM-
AGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF
LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

160 Document License

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon
any breach by You of the terms of this License. Individuals or entities who have
received Adaptations or Collections from You under this License, however, will
not have their licenses terminated provided such individuals or entities remain in
full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for
the duration of the applicable copyright in the Work). Notwithstanding the above,
Licensor reserves the right to release the Work under different license terms or to
stop distributing the Work at any time; provided, however that any such election
will not serve to withdraw this License (or any other licensethat has been, or
is required to be, granted under the terms of this License), and this License will
continue in full force and effect unless terminated as statedabove.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licen-
sor offers to the recipient a license to the Work on the same terms and conditions
as the license granted to You under this License.

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to
the recipient a license to the original Work on the same terms and conditions as
the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it
shall not affect the validity or enforceability of the remainder of the terms of this
License, and without further action by the parties to this agreement, such provision
shall be reformed to the minimum extent necessary to make such provision valid
and enforceable.

d. No term or provision of this License shall be deemed waived and no breach con-
sented to unless such waiver or consent shall be in writing and signed by the party
to be charged with such waiver or consent.

e. This License constitutes the entire agreement between theparties with respect to
the Work licensed here. There are no understandings, agreements or representa-
tions with respect to the Work not specified here. Licensor shall not be bound
by any additional provisions that may appear in any communication from You.
This License may not be modified without the mutual written agreement of the
Licensor and You.

f. The rights granted under, and the subject matter referenced, in this License were
drafted utilizing the terminology of the Berne Convention for the Protection of
Literary and Artistic Works (as amended on September 28, 1979), the Rome Con-
vention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances
and Phonograms Treaty of 1996 and the Universal Copyright Convention (as re-
vised on July 24, 1971). These rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be enforced according to the
corresponding provisions of the implementation of those treaty provisions in the
applicable national law. If the standard suite of rights granted under applicable
copyright law includes additional rights not granted underthis License, such addi-
tional rights are deemed to be included in the License; this License is not intended
to restrict the license of any rights under applicable law.

Bibliography 161

Bibliography

[1] http://www.ripe.net.
[2] CAIDA Analysis of Code-Red.http://www.caida.org/research/

security/code-red/ . Last visited May 2008.
[3] Capacitor plague. http://en.wikipedia.org/wiki/Capacitor_

plague . Last visited May, 2008.
[4] SANS Top-20 2007 Security Risks.http://www.sans.org/top20/ .

Last visited May 2008.
[5] Sasser worm author arrested in Germany. ZDNet.co.uk. May

2004, avaliable fromhttp://news.zdnet.co.uk/security/0,
1000000189,39154196,00.htm . Last visited May 2008.

[6] The Swiss Education & Research Network.http://www.switch.ch .
[7] Wikipedia: LZO. http://en.wikipedia.org/wiki/LZO . Last vis-

ited May 2008.
[8] Wikipedia: Move-to-front transform.http://en.wikipedia.org/

wiki/Move-to-front_transform . Last visited May 2008.
[9] Cisco White Paper: NetFlow Services and Applications.

http://www.cisco.com/warp/public/cc/pd/iosw/ioft/
neflct/tech/napps_wp.htm , 2002. Not avaliable anymore as
of June, 2006.

[10] Blaster Worm Update. http://isc.sans.org/diary.php?
storyid=26 , August 2003. Last visited May, 2008.

[11] McAfee: W32/Nachi.worm. http://vil.nai.com/vil/content/
v_100559.htm , August 2003. Last visited January, 2008.

[12] Symantec Security Response - W32.Blaster.Worm. http:
//securityresponse.symantec.com/avcenter/venc/data/
w32.blaster.worm.html , 2003. Last visited May, 2008.

[13] W32.Welchia.Worm. http://securityresponse.symantec.com/
avcenter/venc/data/w32.welchia.worm.html , August 2003.
Last visited May, 2008.

[14] Jay R. Ashworth. The Risks Digest - The Great Capacitor Scare
of 2003. http://catless.ncl.ac.uk/Risks/22.73.html , May
2003.

[15] Paul Barford and David Plonka. Characteristics of Network Traffic
Flow Anomalies. InProcceedings of the ACM SIGCOMM Internet
Measurement Workshop, 2001.

[16] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. ALocally
Adaptive Data Compression Scheme.Communications of the ACM,

162 Bibliography

29(4), 1986.
[17] CERT Security Advisory CA-2003-20 MS.Blaster.http://www.

cert.org/advisories/CA-2003-20.html , 2004.
[18] Daniela Brauckhoff, Martin May, and Bernhard Plattner. Comparison

of Anomaly Signal Quality in Common Detection Metrics. InProc-
ceedings of ACM SIGMETRICS 2007, MineNet Workshop, June 2007.

[19] Daniela Brauckhoff, Martin May, and Bernhard Plattner. Flow-Level
Anomaly Detection - Blessing or Curse?IEEE INFOCOM 2007, Stu-
dent Workshop, 2007.

[20] Daniela Brauckhoff, Bernhard Tellenbach, Arno Wagner, Anukool
Lakhina, and Martin May. Impact of Packet Sampling on Anomaly
Detection Metrics. InProcceedings of the ACM Internet Measurement
Conference 2006, Rio de Janeiro, Brazil, October 2006.

[21] L. Briesemeister, P. Lincoln, and P. Porras. Epidemic Profiles and De-
fense of Scale-Free Networks. InProceedings of the ACM CCS Work-
shop on Rapid Malcode (WORM’03), October 2003.

[22] M. Burrows and D. J. Wheeler. A Block-Sorting Lossless Data Com-
pression Algorithm. Technical Report 124, Digital Equipment Corpo-
ration, Palo Alto, California, 1994.

[23] The Burrows-Wheeler transform. http://en.wikipedia.org/
wiki/Burrows-Wheeler_transform . Last visited May 2008.

[24] The bzip2 and libbzip2 official home page.http://sources.
redhat.com/bzip2/ . Last visited May 2008.

[25] Wikipedia: Bzip2. http://en.wikipedia.org/wiki/Bzip2 . Last
visited May 2008.

[26] CAIDA: Cooperative Association for Internet Data Analysis. http:
//www.caida.org/ .

[27] Senthilkumar G. Cheetancheri, John Mark Agosta, Denver H. Dash,
Karl N. Levitt, Jeff Rowe, and Eve M. Schooler. A DistributedHost-
based Worm Detection System. InProceedings of the 2006 SIGCOMM
workshop on Large-scale attack defense, 2006.

[28] Cisco IOS NetFlow - White Papers.http://www.cisco.com/en/
US/products/ps6601/prod_white_papers_list.html . Last vis-
ited May, 2008.

[29] Cisco NetFlow Services Solutions Guide.http://www.cisco.
com/en/US/products/sw/netmgtsw/ps1964/products_
implementation_design_guide09186a00800d6a11.html . Last
visited May, 2008.

[30] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC

Bibliography 163

3954, October 2004.
[31] Robert X. Cringely. Calm Before the Storm.http://www.pbs.org/

cringely/pulpit/2001/pulpit_20010730_000422.html . Last
visited May, 2008.

[32] David Dagon, Cliff Zou, and Wenke Lee. Modeling Botnet Propaga-
tion Using Time Zones. InIn Proceedings of the 13th Network and
Distributed System Security Symposium NDSS, February 2006.

[33] R. Danyliw and A. Householder. CERT Advisory CA-2001-19 Code
Red Worm Exploiting Buffer Overflow In IIS Indexing Service DLL.
http://www.cert.org/advisories/CA-2001-19.html , 2001.

[34] R. Danyliw and A. Householder. CERT Advisory CA-2001-23 Con-
tinued Threat of the Code Red Worm.http://www.cert.org/
advisories/CA-2001-23.html , 2001.

[35] DDoSVax.http://www.tik.ee.ethz.ch/ ˜ ddosvax/ .
[36] Thomas D̈ubendorfer. Impact Analysis, Early Detection and Mitiga-

tion of Large-Scale Internet Attacks. PhD thesis, Department for In-
formation Tchnology and Electical Engineering, ETH Zurich, 2005.

[37] Thomas D̈ubendorfer, Arno Wagner, Theus Hossmann, and Bernhard
Plattner. Flow-level Traffic Analysis of the Blaster and Sobig Worm
Outbreaks in an Internet Backbone. InProceedings of DIMVA 2005,
LNCS 3548, Springer’s Lecture Notes in Computer Science, 2005.

[38] Matthew Dunlop, Carrie Gates, Cynthia Wong, and ChenxiWang.
SWorD - A Simple Worm Detection Scheme. InOTM Conferences
(2), pages 1752–1769, 2007.

[39] eEye Digital Security. Blaster Worm Analysis.http://www.eeye.
com/html/Research/Advisories/AL20030811.html , 2003.

[40] Wikipedia: Entropy. http://en.wikipedia.org/wiki/Entropy .
Last visited May, 2008.

[41] FAI - Fully Automatic Installation. http://www.informatik.
uni-koeln.de/fai/ . Last visited May, 2008.

[42] S. Floyd and V. Paxson. Difficulties in Simulating the Internet.
IEEE/ACM Transactions on Networking, 2001.

[43] Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner. Large-
scale Vulnerability Analysis. InLSAD ’06: Proceedings of the 2006
SIGCOMM workshop on Large-scale attack defense, pages 131–138,
New York, NY, USA, 2006. ACM.

[44] Hungary Gabor Szappanos VirusBuster. Virus Bulletin:Virus infor-
mation and overview - W32/Welchia.http://www.virusbtn.com/
resources/viruses/welchia.xml , April 2004. Last visited Jan-

164 Bibliography

uary, 2005.
[45] Carrie Gates, Michael Collins, Michael Duggan, AndrewKompanek,

and Mark Thomas. More Netflow Tools for Performance and Secu-
rity. In Proceedings of the 18th Conference on Systems Administration
(LISA 2004), Atlanta, USA, November 14-19, 2004, pages 121–132.
USENIX, 2004.

[46] Wikipedia: Gibbs’ inequality. http://en.wikipedia.org/wiki/
Gibbs’_inequality . Last visited May, 2008.

[47] J. Willard Gibbs.The Collected Works of J. Willard Gibbs. Yale Uni-
versity Press, 1957.

[48] GNU GENERAL PUBLIC LICENSE, Version 2.http://www.gnu.
org/copyleft/gpl.html , June 1991.

[49] G. Gu, Z. Chen, P. Porras, and W. Lee. Misleading and Defeating
Importance-Scanning Malware Propagation. InProceedings of the 3rd
International Conference on Security and Privacy in Communication
Networks (SecureComm 2007), Mice, France, 2007.

[50] The gzip home page.http://www.gzip.org/ .
[51] Lukas Haemmerle. P2P Filesharing Population Tracking. Master’s

thesis, ETH Zurich, 2004.
[52] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood,and D. Wol-

ber. A Network Security Monitor. InProceedings of the IEEE Sympo-
sium on Security and Privacy, 1990.

[53] Prof. Dr. K. Hinderer.Stochastik f̈ur Infomatiker und Ingenieure. Prof.
Dr. K. Hinderer, 1989. Skript zu Vorlesung an der Universität Karl-
sruhe.

[54] Wikipediea: Huffman Coding.http://en.wikipedia.org/wiki/
Huffman_coding . Last visited May, 2008.

[55] David A. Huffman. A Method for the Construction of Minimum-
Redundancy Codes.Proceedings of the Institute of Radio Engineers,
40(9):1098–1101, 1952.

[56] http://www.ipv6.org/ .
[57] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation

Theory. Prentice-Hall PTR, Englewood Cliffs, NJ, 1993.
[58] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining

Anomalies Using Traffic Feature Distributions. InProccedings of ACM
SIGCOMM, Philadelphia, PA, August 2005, 2005.

[59] Frank Lambert. A Student’s Approach to the Second Law and En-
tropy. http://www.entropysite.com/students_approach.html ,
August 2005. Last visited May, 2008.

Bibliography 165

[60] Wanke Lee and Dong Xiang. Information-Theoretic Measures for
Anomaly Detection. IEEE Sumposium on Security and Priovacy, Oak-
land, CA, May 2001.

[61] Robert Lemos. MSBlast epidemic far larger than believed.
http://news.com.com/MSBlast+epidemic+far+larger+tha n+
believed/2100-7349_3-5184439.html , 2004. Last visited May
2008.

[62] Abraham Lempel and Jacob Ziv. A Universal Algorithm forSequential
Data Compression.IEEE Transactions on Information Theory, May
1977.

[63] Ming Li and Paul Vitanyi.An Introduction to Kolmogorov Complexity
and Its Applications. Springer Verlag, second edition edition, 1997.

[64] Richard Lippmann, David Fried, Isaac Graf, Joshua Haines, Kristo-
pher Kendall, David McClung, Dan Weber, Seth Webster, Dan
Wyschogrod, Robert Cunningham, and Marc Zissman. Evaluating In-
trusion Detection Systems: The 1998 DARPA Off-line Intrusion De-
tection Evaluation. InProceedings of the DARPA Information Sur-
vivability Conference and Exposition, Los Alamitos, CA, 2000. IEEE
Computer Society Press.

[65] Wikipedia: LZ77 and LZ78. http://en.wikipedia.org/wiki/
LZ77 . Last visited May, 2008.

[66] http://www.oberhumer.com/opensource/lzo/ . LZO compres-
sion library. Last visited May, 2008.

[67] Mohammad Mannan and Paul C. van Oorschot. On Instant Messaging
Worms, Analysis and Countermeasures. InWORM ’05: Proceedings
of the 2005 ACM workshop on Rapid malcode, pages 2–11, New York,
NY, USA, 2005. ACM.

[68] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom number genera-
tor. In ACM Trans. on Modeling and Computer Simulation, volume 8,
pages 3–30, 1998.

[69] Makoto Matsumoto. Mersenne Twister Home Page.http://www.
math.sci.hiroshima-u.ac.jp/ ˜ m-mat/MT/emt.html . Last vis-
ited May, 2008.

[70] John McHugh. The 1998 Lincoln Laboratory IDS Evaluation. In
RAID ’00: Proceedings of the Third International Workshop on Re-
cent Advances in Intrusion Detection, pages 145–161, London, UK,
2000. Springer-Verlag.

[71] J. Mirkovic, J. Martin, and P. Reiher. A Taxonomy of DDoSAttacks

166 Bibliography

and DDoS Defense Mechanisms.http://www.lasr.cs.ucla.edu/
ddos/ucla_tech_report_020018.pdf , 2002. Last visited May,
2008.

[72] (Modified) BSD license. http://en.wikipedia.org/wiki/BSD_
License , 1988. Last visited May, 2008.

[73] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. Inside the Slammer Worm.IEEE Security and Privacy,
4(1):33–39, July 2003.

[74] D. Moore, C. Shannon, and J. Brown. Code-Red: a case study on
the spread and victims of an Internet worm. InProceedings of the
ACM/USENIX Internet Measurement Workshop, Marseille, France,
November 2002.

[75] O. Müller, D. Graf, A. Oppermann, and H. Weibel. Swiss Internet
Analysis.http://www.swiss-internet-analysis.org/ , 2004.

[76] Estimation of entropy and information of undersampledprobability
distributions. Workshop followinf NIPS’03. http://www.menem.
com/ ˜ ilya/pages/NIPS03/ , 2003. Last visited May, 2008.

[77] The openMosix Project. http://openmosix.sourceforge.net/ .
Last visited March, 2008, project officially shut down as of March 1,
2008.

[78] http://www.openssh.com/ .
[79] R. Pastor-Satorras and A. Vespignani. Epidemic Spreading in Scale-

Free Networks, 2001.
[80] Ryan Permeh, Marc Maiffret, and Ryan Permeh. eEye Digital Security

Advisory .ida Code Red Worm.http://research.eeye.com/html/
advisories/published/AL20010717.html , July 2001. Last visited
May, 2008.

[81] Georgios Portokalidis and Herbert Bos. SweetBait: Zero-Hour Worm
Detection and Containment Using Low- and High-InteractionHoney-
pots. Elsevier Computer Networks, Special Issue ‘From IntrusionDe-
tection to Self-Protection’, 51(5):1239–1255, April 2007.

[82] J. Quittek, T. Zseby, B. Claise, and S. Zander. Requirements for IP
Flow Information Export (IPFIX). RFC 3917, October 2004.

[83] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis.
My Botnet Is Bigger Than Yours (Maybe, Better Than Yours): Why
Size Estimates Remain Challenging. InProceedings of HotBots 2007,
April 2007.

[84] RFC 1951: DEFLATE 1.3 specification.
[85] RFC 1952: GZIP 4.3 Specification.

Bibliography 167

[86] RFC 3513: Internet Protocol Version 6 (IPv6) Addressing Architec-
ture.

[87] Haakon Ringberg, Augustin Soule, Jennifer Rexford, and Christophe
Diot. Sensitivity of PCA for Traffic Anomaly Detection. InSIGMET-
RICS ’07 Conference Proceedings, pages 109–120, 2007.

[88] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Mea-
surement Study of Peer-to-Peer File Sharing Systems. InProceed-
ings of Multimedia Computing and Networking 2002 (MMCN ’02),
San Jose, CA, USA, January 2002.

[89] S. Schechter, J. Jung, and A. Berger. Fast Detection of Scanning Worm
Infections. InIn Proceedings of the Seventh International Symposium
on Recent Advances in Intrusion Detection, French Riviera,France,
September 2004, 2004.

[90] C. Shannon and D. Moore. CAIDA: The Spread of the Witty Worm.
http://www.caida.org/research/security/witty/ , 2004.

[91] C. E. Shannon. A Mathematical Theory of Communication.The Bell
System Technical J. 27, 1948.

[92] C.E. Shannon. A Mathematical Theory of Communication.Bell
System Technical Journal, 27, 1948. available fromhttp://cm.
bell-labs.com/cm/ms/what/shannonday/paper.html .

[93] Colleen Shannon and David Moore. The Spread of the WittyWorm.
IEEE Security and Privacy, 2(4):46–50, July/August 2004.

[94] SILK - System for Internet-Level Knowledge.http://tools.netsa.
cert.org/silk/ . Last visited May, 2008.

[95] Augustin Soule, Fernando Silveira, Haakon Ringberg, and Christophe
Diot. Challenging the Supremacy of Traffic Matrices in Anomaly De-
tection. In Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, 2007.

[96] Eugene H. Spafford. The Internet Worm Program: An Analysis. Tech-
nical Report CSD-TR-823, Purdue University, 1988.

[97] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in
Your Spare Time. InProc. USENIX Security Symposium, 2002.

[98] Stuard Staniford, David Moore, Vern Paxson, and Nicholas Weaver.
The Top Speed of Flash Worms. InProceedings of the Workshop on
Rapid Malcode (WORM) 2004, 2004.

[99] Stephens, Curtis E, ed. Information technology - AT Attachment 8
- ATA/ATAPI Command Set (ATA8-ACS), working draft revision3f,
December 2006.

[100] Standard Template Library Programmer’s Guide.http://www.sgi.

168 Bibliography

com/tech/stl/ . Last visited December, 2005.
[101] Bernhard Plattner Thomas Dübendorfer. Host Behaviour Based Early

Detection of Worm Outbreaks in Internet Backbones. InProceedings
of the 14th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises (WET ICE 2005), STCA
security workshop, Link̈oping, Sweden, 2005.

[102] Yuji Ukai and Derek Soeder. ANALYSIS: Sasser Worm.
http://research.eeye.com/html/advisories/published/
AD20040501.html , 2004. visited May, 2008.

[103] Eidgen̈ossischer Datenschutz und Öffentlichkeitsbeauf-
tragter (ED̈OB). Leitfaden Interneẗuberwachung am Arbeitplatz.
http://www.edoeb.admin.ch/dokumentation/00445/00472 /
00532/index.html?lang=de , 2003. Art.-Nr. 410.054.d, Bundesamt
fr Bauten und Logistik BBL. Last visited May, 2008.

[104] US-CERT. Vulnerability Note: Witty (VU#947254).http://www.
kb.cert.org/vuls/id/947254 , 2004.

[105] P. Vitanyi and R. Cilibrasi. Clustering by compression. http:
//arxiv.org/abs/cs.CV/0312044 , 2003. Last visited May, 2008.

[106] A. Wagner and B. Plattner. Peer-to-Peer Systems as Attack Platform
for Distributed Denial-of-Service. InACM SACT Workshop, Washing-
ton, DC, USA, 2002.

[107] Arno Wagner. NetFlow Data Capturing and Processing atSWITCH
and ETH Zurich. Contribution to the Architectural Panel at FloCon,
2004.

[108] Arno Wagner. Entropy Based Detection of Fast InternetWorms. The
Mediterranean Journal of Computers and Networks, 4(1), January
2008. ISSN: 1744-2397, Special Issue on Network Measurement and
Data Mining.

[109] Arno Wagner, Thomas D̈ubendorfer, Lukas Ḧammerle, and Bernhard
Plattner. Flow-Based Identification of P2P Heavy-Hitters.In Inter-
national Conference on Internet Surveillance and Protection (ICISP),,
Cap Esterel, France, 2006.

[110] Arno Wagner, Thomas D̈ubendorfer, Bernhard Plattner, and Roman
Hiestand. Experiences with Worm Propagatiopn Simulations. In Pro-
ceedings of the Workshop on Rapid Malcode (WORM) 2003, 2003.

[111] Arno Wagner and Bernhard Plattner. Entropy Based Wormand
Anomaly Detection in Fast IP Networks. STCA security workshop,
WET ICE 2005 Link̈oping, Sweden, 2005.

[112] L. Wall, T. Christiansen, and R. L. Schwarz.Programming Perl, 2nd

Bibliography 169

Edition. O’Reilly, 1996.
[113] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. Epidemic

Spreading in Real Networks: An Eigenvalue Viewpoint, 2003.22nd
Symposium on Reliable Distributed Computing, Florence, Italy, Oct.
6-8, 2003.

[114] N. C. Weaver.http://www.cs.berkeley.edu/ ˜ nweaver/warhol.
html , 2001. visited June, 2003.

[115] Nicholas Weaver and Dan Ellis. Reflections on Witty: Analyzing the
Attacker. login The USENIX Magazine, June 2004. Avaliable at
http://www.usenix.org/publications/login/ .

[116] Stephanie Wehner. Analyzing Worms and Network Trafficusing Com-
pression. http://arxiv.org/pdf/cs.CR/0504045 , April 2005.
Last visited May, 2008.

[117] Stephanie Wehner. Analyzing Worms and Network Trafficusing Com-
pression.Journal of Computer Security, 15(3):303–320, 2007.

[118] S. Wei, J. Mirkovic, and M. Swany. Distributed Worm Simulation with
a Realistic Internet Model. InProceedings of the 2005 Symposium on
Modeling and Simulation of Malware, June 2005.

[119] Diego Zamboni, James Riordan, and Yann Duponchel. Building and
Deploying Billy Goat: a Worm-Detection System. InProceedings of
the 18th Annual FIRST Conference, 2006.

[120] C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and Early
Warning for Internet Worms, 2003. InProceedings of the 10th ACM
conference on Computer and communication security.

[121] C. C. Zou, W. Gong, and D. Towsley. Code Red Worm Propagation
Modeling and Analysis. InProceedings of the 9th ACM conference
on Computer and communications security, Washington, DC, USA,
November 2002.

[122] Cliff C. Zou. Internet Worm Propagation Simulator.http://tennis.
ecs.umass.edu/ ˜ czou/research/wormSimulation.html , 2004.
Last visited December, 2007.

[123] Cliff C. Zou, Don Towsley, and Weibo Gong. On the Performance of
Internet Worm Scanning Strategies.Perform. Eval., 63(7):700–723,
2006.

