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Abstract

During outbreaks of fast Internet worms the charac-
teristics of network flow data from backbone networks
changes. We have observed that in particular source
and destination IP and port fields undergo compress-
ibility changes, that are characteristic for the scanning
strategy of the observed worm. In this paper we present
measurements done on a medium sized Swiss Inter-
net backbone (SWITCH, AS559) during the outbreak of
the Blaster and Witty Internet worms and attempt to
give a first explanation for the observed behaviour. We
also discuss the impact of sampled versus full flow data
and different compression algorithms. This is work
in progress. In particular the details of what exactly
causes the observed effects are still preliminary and un-
der ongoing investigation.

1. Entropy and Compressibility

Generally speaking entropy is a measure of how ran-
dom a data-set is. The more random it is, the more
entropy it contains. Entropy contents of a (finite) se-
quence of values can be measured by representing the
sequence in binary form and then using data compres-
sion on that sequence. The size of the compressed
object corresponds to the entropy contents of the se-
quence. If the compression algorithm is perfect (in the
mathematical sense), the measurement is exact.

On the theoretical side it is important to understand
that not entropy is the relevant traffic characteristic,
but Kolmogorov Complexity [16] of an interval of data.
While entropy describes the average expected informa-
tion content of a symbol that is chosen in a specific ran-
domised way from a specific symbol set, Kolmogorov
Complexity describes the specific information content
of a specific object given, e.g. as a binary string of
finite length.

2. Measurements

We are collecting NetFlow v5 [10] data from the
SWITCH (Swiss Academic and Research Network [4],
AS559) network, a medium-sized Swiss backbone oper-
ator, which connects all Swiss universities and various
research labs (e.g. CERN) to the Internet. Unsampled
NetFlow data from all four SWITCH border routers is
captured and stored for research purposes in the con-
text of the DDoSVax project [11] since early 2003. The
SWITCH IP address range contains about 2.2 million
IP addresses. In 2003 SWITCH carried around 5% of
all Swiss Internet traffic [17]. In 2004, we captured
on average 60 million NetFlow records per hour, which
is the full, non-sampled number of flows seen by the
SWITCH border routers.

In Figures 1,2,3 and 4 we plot the entropy estima-
tions by compressibility over time for source and desti-
nation IP addresses and ports for the Blaster [9, 6, 15]
and Witty [18, 20] worm. Both worms are relatively
well understood and well documented. First observed
on August 11th, 2003, Blaster uses a TCP random
scanning strategy with fixed destination and variable
source port to identify potential infection targets and
is estimated to have infected 200’000. . .500’000 hosts
worldwide in the initial outbreak. The Witty worm,
first observed on March 20th, 2004, has some unex-
pected characteristics. Witty attacks a specific fire-
wall product. It uses UDP random scans with fixed
source port and variable destination port. Witty in-
fected about 15’000 hosts in less than 20 minutes.

The y-axis in the plots gives inverse compression ra-
tion, i.e. lower values indicate better compressibility.
The plotted time intervals start before the outbreaks to
illustrate normal traffic compressibility characteristics.
Samples taken from other times in 2003 and 2004 indi-
cate that the pre-outbreak measurements, were source
and destination figures are close together, are char-
acteristic for non-outbreak situations. The outbreak
times of both worms are marked with arrows.

The given measurements were done both on the full
SWITCH flow set as well as on a 1 in 20 sample. Com-
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Figure 1. Blaster - TCP address parameter compressibility ( lzo1x-1 algorithm)
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Figure 2. Witty - UDP address parameter compressibility (lzo 1x-1 algorithm)

pression algorithm used is the fast lzo algorithm lzo1x-
1 (see Section 4). It can be seen that in both cases
the compressibility plots change significantly during
the outbreak. Changes are consistent with the intu-
ition that more random date is less compressible, while
more structured date can be compressed better. The
measurements on sampled data show a vertical shift,
but still exhibit the same characteristic changes.

3. Analysis

In normal traffic there is roughly one return flow to
a host for each flow it sends out as connection initia-
tor. During a worm outbreak, most scanning flows do
not have a return flow. This causes the changes in the
overall flow data to be strongly dependent to the char-
acteristics of the flows generated for scanning connec-
tion attempts. Note that the absence of an answering
flow does not mean the absence of a host at the target
address. It can also be due to firewalls, filters and not
running services.

The connection between entropy and worm prop-
agation is that worm scan-traffic is more uniform or
structured than normal traffic in some respects and a
more random in others. The change in IP address char-
acteristics seen on a flow level is intuitive: few infected
hosts try to connect to a lot of other hosts. If these

flows grow to be a significant part of the set of flows
seen in total, the source IP addresses of the scanning
hosts will be seen in many flows and since they are
relatively few hosts, the source IP address fields will
contain less entropy per address seen than normal traf-
fic. On the other hand the target IP addresses seen in
flows will be much more random than in normal traf-
fic. These are fundamental characteristics of any worm
outbreak where each infected host tries to infect many
others.

For ports, the behaviour is more variable. The typ-
ical scanning behaviour will be a random (from an OS
selected range) or fixed source port and a fixed des-
tination port. In the Blaster plots the impact of ran-
dom source port and fixed destination port can be seen
clearly. Witty is different. Because it did scan with
fixed source port and random target port (because it
attacked a firewall product that sees all network traf-
fic), the port plots show exactly the opposite compress-
ibility changes compared to Blaster.

At this time it in unclear how much weaker a topo-
logical worm (i.e. a worm that uses data from the local
host to determine scanning targets and does not do
random scanning) would influence the flow field com-
pressibility statistics.
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Figure 3. Blaster - TCP, randomly sampled at 1 in 20 flows (lzo1 x-1 algorithm)
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Figure 4. Witty - UDP, randomly sampled at 1 in 20 flows (lzo1x-1 algorithm)

4. Compressor Comparison

Method (Library) CPU time / hour
(60’000’000 flows/hour)

bzip2 (libbz2-1.0) 169 s
gzip (zlib1g 1.2.1.1-3) 52 s
lzo1x-1 (liblzo1 1.08-1) 7 s

Figure 6. CPU time (Linux, Athlon XP 2800+)

We compared three different lossless compression
methods, the well-known bzip2 [2] and gzip [3] com-
pressors as well as the lzo (Lempel-Ziv-Oberhumer) [1]
real-time compressor. We did not consider lossy com-
pressors. Bzip2 is slow and compresses very well, gzip
is average in all regards and lzo family is fast but does
not compress well.

Direct comparison of the three compressors on net-
work data shows that while the compression ratios are
different, the changes in compressibility are very simi-
lar. Figure 5 gives an example plot that compares the
compression statistics for destination IP addresses be-
fore and during the Witty worm outbreak. Because of
its speed advantage lzo1x-1 was selected as preferred
algorithm for our work. Note that it is extremely fast
(Table 6, non-overlapping measurement intervals of 5
minutes each, includes all overhead like NetFlow record

parsing) and uses little memory (64kB for the compres-
sor), making it far more efficient than other methods
of entropy estimation, like for example methods based
on determining the frequency of individual data values.
Since we are only concerned with relative changes, the
far from optimal compression ratio of the algorithm
does not matter.

5. Related Work

The idea to use some entropy measurements to de-
tect worms has been floating around the worm research
community for some time. Yet we are not aware of
any publication(s) describing concrete approaches, sys-
tems or measurements. The authors of this paper were
prompted to investigate this idea by an observation
on the Nachi [12, 7, 5] worm: Nachi generated about
as many additional ICMP flow records as there were
total flow records exported before the outbreak, yet
the compressed size of the storage files increased only
marginally.

In [19] the authors describe behaviour-based cluster-
ing, an approach that groups alerts from intrusion de-
tection systems by looking at similarities in the ob-
served packet header fields. The clusters are then
prioritised for operator review. Principal Component
Analysis is used in [14] to separate normal and attack
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Figure 5. Witty - compressor comparison

traffic on a network-wide scale in a post-mortem fash-
ion. Detection of exponential behaviour in a worm out-
break is studied in [8]. In [13] the authors study how
worms propagate through the Internet.

6. Conclusion

We have presented measurements that indicate com-
pressibility analysis of network flow data address fields
can be used for the detection of fast worms. The ap-
proach is generic and does not need worm-specific pa-
rameterisation in order to be effective. It can generate
first insights and is suitable for initial alarming, but
has limited analytic capability. We are currently inves-
tigating how the entropy-based approach can help to
generate a more detailed analysis of a massive network
event.
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