
Firewall Analysis by Symbolic Simulation

Arno Wagner
Consecom AG

Zurich, Switzerland
Email: arno.wagner@consecom.com

Ulrich Fiedler
Bern University of Applied Sciences

Biel, Switzerland
Email: ulrich.fiedler@bfh.ch

Abstract—When doing Layer 4 security analysis on a
chain of firewalls, the analyst is faced with the problem
of combining them into a unified representation in order
to verify reachability though the chain and possibly
compare it with a security policy. Doing this manually is
labor-intensive and becomes infeasible if firewalls with
large configurations are part of the chain. To automate
the unification process, we have created the Consecom
Network Analyzer that uses symbolic simulation with
an interval representation to generate a unified equiv-
alent firewall in a normalized, simple and flat form.
We show the suitability of this approach for firewalls
with large configurations by giving benchmarks based
on deployed rule-sets. We also demonstrate the effects
of different optimization techniques on run-time and
memory footprint. The Consecom Network Analyzer
has already been used successfully for security reviews.

Keywords-Firewall Analysis; Symbolic Simulation.

I. Introduction

This paper describes the Consecom Network Analyzer

(CNA), which is the result of a collaboration between
academia and industry. The CNA is a tool-set that greatly
reduces the effort, and thereby cost, for practical firewall
security analysis in the presence of large firewall configu-
rations.
A firewall security analysis is one type of network

security review. It is often done on network Layer 4, for
example for TCP and UDP traffic. Figure 1 shows the
basic scenario. The typical steps to be done include:

1) Normalize firewall configurations
2) Identify critical network paths
3) Identify firewalls along each critical path
4) Determine network reachability on critical paths
5) Compare reachability and security requirements
6) Identify non-compliant firewall rules

The primary motivation for creating the CNA lies in
steps 4, 5 and 6. In step 4, the CNA calculates the
reachability in a unified simple format that has firewall
rules attached as trace information. If a formalized or easy
to formalize security policy is available, it can be compared
automatically to the actual network reachability. As such
a security policy is often not available in practice, step 5
may still need to be done manually.
Figure 2 shows the typical application scenario. The

Rule-Set Converter is not part of the core CNA system

and has to be adapted for each different firewall descrip-
tion format. The CNA uses a normalized symbolic Layer
4 format internally that is based on intervals. As core
contribution of this paper, we show this representation is
suitable for calculating reachability even in the presence
of large firewall configurations. To this end, we present
benchmark calculations on deployed rule-sets. The CNA
has been used successfully in firewall security reviews.

S D. . .
FW 1 FW n

Fig. 1. Unidirectional reachability along a critical network path.

The paper is organized as follows: Section II introduces
our network and firewall model, and the symbolic repre-
sentation used. Section III gives the operations used for
single firewalls. Section IV explains how to calculate uni-
directional reachability. A complexity analysis is sketched
briefly in Section V. Section VI describes the implemen-
tation, while Section VII states benchmark results and
the effects of different optimization techniques. Section
VIII explains how to extend the approach to two-sided
reachability and to automated comparison with a policy.
The paper finishes with a discussion of related work in
Section IX and a conclusion in Section X.

raw

Converter Calculation
Reachability

rule sets

Policy
Comperator

Reachability

Policy

violations

rule
sets

Network
FW

formalized Policy

normalizedRule−Set

Fig. 2. Typical analysis data-flow with the CNA.

II. Approach

The reachability calculation process starts with a repre-
sentation of the initial reachability (disregarding firewalls),
which will often be unconstrained. This initial reachability
is then successively reduced by applying firewall configu-
rations. The end-result is a flat, unified representation of
the firewall-chain, restricted by the initial reachability.

A. Network Model

We are primarily interested in network reachability as
restricted by firewalls. Given a source network S, sequence
of firewalls FW1, . . . , FWn and a destination network
D (see also Figure 1), we say that D is reachable from
S if there are network packets that can traverse FW1,
. . ., FWn without being dropped by any FWi. Note that
some attacks will need two-sided reachability. For example
services used over TCP can usually only be attacked if
response packets can traverse the firewall sequence in
reverse order. See Section VIII-A for a discussion on how
to check two-sided reachability.
We restrict the packet information visible for firewalls to

IP addresses and ports, which results in a Layer 4 model.
Each protocol is treated separately, although it is possible
to mix protocols, for example by doing a forward analysis
with TCP and a backward analysis with ICMP in order
to determine whether an ICMP response to a TCP packet
would get through. Routing is out of scope for this work,
as we do not see it as a security mechanism; see Section
IV-A for a brief discussion.

B. Subspaces, Boxes and Intervals

Reachability is represented by subspaces of

M = src IP× src port× dst IP× dst port

We organize these subspaces into sets (lists) of axis-aligned
hyperrectangles in M , also called axis aligned boxes [1] (or
simply box for short), with

A ⊆ M is represented as

A = {b1, . . . , bn} with bi ∈ M and bi is a box.

In this paper, boxes will always be axis-aligned. A box
can be represented as a 4-tuple of intervals, which allows
symbolic computations. This representation is similar to
the one used in [2].

Box example:
b = (10.0.0.0− 10.0.0.255, 1024− 65535, 10.1.1.1, 80)

We use intervals with wrap-around, where IP and port
number spaces are regarded as circles. This facilitates rep-
resenting complements. Figure 3 gives graphical examples
of three boxes in two dimensions represented this way.

40 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

40 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

A

40 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

7 7 7

B B

C

C C

C

Fig. 3. Example: Boxes A,B and C in two dimensions.

C. Firewall Model

The CNA uses a simple firewall model, where each
firewall consists of a linear sequence of rules r that each
have a box describing their applicability and one of the
target actions accept or drop, with a default drop at the
end of sequence. This corresponds to the ”simple” model
of [3].

D. Rule Application and Set Operations

In order to apply a firewall rule r = (b,<action>) to
a subspace A = {b1, . . . , bn} ⊆ M , we intersect b with
the different bi in turn and apply the action to the result
A ∩ {b} = {b ∩ b1, . . . , b ∩ bn}.
The usual set operations are defined on boxes and, by

extension, on subspaces of M . Some deserve additional
comments.

40 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

40 1 3 5 6

1
2
3
4
5
6
7

0

x2

x1

27 740 1 2 3 5 6

1
2
3
4
5
6
7

0

x2

x1

7

Fig. 4. Box intersection, as used in rule application, shown for two
dimensions.

Intersection: Intersecting two boxes in d dimensions can
have up to 2d result boxes. Figure 4 illustrates this in two
dimensions. For b1, b2 ∈ M , the intersection b1 ∩ b2 may
consist of up to 16 boxes as M has 4 dimensions.
Box complement: The complement of an interval is
derived by adjusting the boundaries. The complement of
a box is derived by complementing each interval in turn
and setting all other intervals to full range. Hence, a 4-
dimensional box has four boxes as its complement.
Subtraction: Calculating a− b for boxes a and b is done
by using the relation a− b = a ∩ b̄ from set calculus.

III. Restricting Reachability by a Single
Firewall

The core operations used in determining reachability
through a single firewall are apply_firewall() and ap-

ply_rule(), shown in Figure 5 in simplified form. The
task of apply_firewall() is to take a given reachability
description, stated as a set of boxes, called here a Work

Set (WS) and, using the rules of the firewall, determine
both an Accept Set (AS), which is the part of the WS
that can pass the firewall, and a Drop Set (DS) that is
the part of the WS that cannot pass the firewall. AS
and DS are represented as sets of boxes. The function
apply_rule() forms the basis of apply_firewall() and
implements calculation of the intersection I between the
given rule and WS. The intersection I is then added to
the AS for an accept rule or to the DS for a drop rule.

Building on these two operations, more complex opera-
tions can be constructed. Note that apply_rule()may at-
tach trace information to boxes, for example to document
rule application. If desired, the full history of each box
can be recorded in the trace. This allows to determine the
specific firewall rules that are responsible for a box being
in the final reachability, and represents information needed
in any report about firewall configuration problems.

apply_firewall(WS, FW):

AS := ∅ /* Accept Set */

DS := ∅ /* Drop Set */

for r ∈ in FW: /* r: box of a rule */

I := apply_rule(WS, r)

WS := WS - I /* reduce Work Set */

if r is accept: AS := AS ∪ I

if r is drop: DS := DS ∪ I

return(AS, DS)

apply_rule(WS, r):

I := ∅
for b ∈ WS: /* b is a box */

i := b ∩ r

I := I ∪ i

return(I)

Fig. 5. Pseudo-code for apply_firewall() and apply_rule() (sim-
plified).

IV. Unidirectional Reachability Computation

Pseudo-code for the calculation of one-direction reacha-
bility through a sequence of firewalls is given in Figure
6. We will typically choose the initial reachability as
unrestricted. Starting with full, unconstrained reachability
will ensure the final results only rely on the given firewall
configurations. A more restricted initial reachability can
still be used when appropriate. Ports are unconstrained in
the initial reachability.

A. Comments on Routing

Routing can usually not be regarded as security feature
in practice and is not seen as one by many customers.
There are several reasons for this:

• The primary task of routing is to get packets to a
specific destination, while the primary task of a fire-
wall is to prevent packets reaching a specific destina-
tion. Routing configuration and firewall configuration
hence have diametrically opposed primary tasks and
this is reflected in procedures and mind-sets.

• Due to the different primary tasks, often the teams
responsible for routing and for firewalls are different.

• While firewall configurations are handled securely and
all updates are done with the security model in mind,
routing configurations are typically changed with the
network model in mind and handled in a less secure
fashion. Routing is hence easier to compromise.

• Sometimes customers cannot even specify the IP
ranges of S and D precisely, but have precise firewall
information. This may sound surprising, but if routing
delivers more to a physical target network than ex-
pected, this is not necessarily a problem. For firewalls,
it is a critical error.

• Routing works on Layer 3, while firewalls work on
Layer 4. Mixing the two complicates things and in-
creases maintenance effort.

Overall, it is far more practical to separate routing and
firewalls and to require that all restrictions on reachability
must be implemented by firewalls placed into the critical
network paths. This is especially true for customers with
complex firewall configurations.
It should be noted that with this approach, the ques-

tion arises whether a specific firewall actually is on the
critical network paths it is supposed to be on. Answering
this question requires a network topology analysis and is
outside of the scope of this work.
It should also be noted that network scanning always

takes routing into account. This is a fundamental limita-
tion of network scanning.

in: S, D /* Source, Destination networks */

FW1, ..., FWn /* firewalls */

out: ASn /* final reachability */

DS1,. . .,DSn /* Drop Sets */

WS1 := S × <all> × D × <all>

(AS1, DS1) := apply_firewall(WS1, FW1)
WS2 := AS1
(AS2, DS2) := apply_firewall(WS2, FW2)
WS3 := AS2
...

(ASn, DSn) := apply_firewall(FWn− 1, WSn− 1)

Fig. 6. Pseudo-code for calculating unidirectional reachability with
apply_firewall() for the scenario shown in Figure 1.

V. Algorithmic Complexity

We briefly sketch the complexity analysis idea. For a
worst-case scenario, start with one box and a single firewall
with n drop rules. Each drop rule can split (asymptoti-
cally) at most one element of the Work Set into a maxi-
mum of 2d (with dimension d = 4) non-overlapping parts
that are kept in the working set. Hence, each rule increases
the size of the working set by a maximum of 16, giving an
overall space complexity of the result of 16 ∗n ∈ O(n). As
each successive rule application has to work on 16 more
boxes, time complexity is 1 ∗ 16 + 2 ∗ 16 + . . . + n ∗ 16 =
16 ∗ (1+2+ . . .+n) = 16

2
n(n− 1) ∈ O(n2). A very similar

argument applies to accept rules and mixed rule-sets.
In comparison, in [4], the authors need worst case effort

O(n4) to build a Firewall Decision Diagram (FDD) for n

firewall rules with for our firewall model. It is reasonable to

No FW / rule-set size benchmark results
FW raw nor- opt. Python input opt. trace core-loop
seq. malized baseline reduction ported to C

1 S 27 2’000 180 8min 12MB 6s 6MB 5s 6MB 0.2s 6MB
2 M 67 23’000 8300 - - 546min 84MB 222min 48MB 48s 19MB
3 L 170 27’000 3100 - - 34min 26MB 20min 18MB 4s 10MB

4 S, M 100min 32MB 294s 14MB 240s 13MB 3s 14MB
5 M, S - - 544min 81MB 336min 48MB 49s 19MB
6 M, L 5000min 187MB 660min 77MB 250min 56MB 69s 22MB
7 S, M, L 205min 58MB 370s 16MB 305s 16MB 4s 16MB

TABLE I
Benchmarks (TCP)

expect that this worst-case is extremely unlikely to happen
in practice.
In [3], the authors claim a worst case complexity of

O(n) for processing a firewall with n rules in their ”simple
model”. However, they assume constant effort for set op-
erations on their accept (A) and drop (D) sets. While the
BDDs used are typically very efficient set-representations,
they do not reach O(1) worst-case effort for set operations
and the correctness of the given complexity analysis seems
doubtful.

VI. Implementation

The CNA is implemented in Python 3 [5] with C
extensions. This allows a clean and flexible OO design
and facilitates targeted optimizations. IP addresses and
port numbers are represented directly by Python integers.
Boxes are represented as Python 8-tuples (representing
4 intervals) and encapsulated into class objects in order
to allow attachment of traces, annotations and firewall
rule actions. Subspaces are represented as Python lists.
The pure-Python prototype is relatively slow and has high
memory consumption, but can already be used for security
reviews involving firewalls with small and medium-sized
rule-sets.

VII. Optimizations and Benchmarks

First, note that in the absence of Network Address
Translation (NAT), which is rarely deployed in security
critical networks, firewalls can be arbitrarily reordered, as
exactly those packets that make it through all of them are
part of the final reachability space. In particular, a good
selection of the first firewall to be processed can have sig-
nificant performance benefits. Benchmarks must therefore
always be seen together not only with the relevant firewall
configurations, but also their processing order.

A. Benchmarks

In order to determine performance and to examine the
performance impact of different optimizations, we give
a selection of benchmark results1 in Table I. Times are

1As with all benchmarks, it should be noted that the stated results
only give a rough idea about runtime, memory footprint and effects
of different optimizations.

CPU times including input data parsing. Memory sizes
are the whole process memory footprint, excluding shared
areas (libraries). The calculations were done using Linux
(Debian Squeeze 32bit) on an Athlon64 X2 5600+ CPU,
using only one CPU at a time. Memory was set to the 4GB
memory model and the machine was running kernel 2.6.38
from kernel.org without any special optimizations. Python
versions used include 3.0 and 3.1 with no significant
differences in performance between the two.

Lines 1, 2, 3 of Table I describe the firewall configura-
tions used. These are firewall configurations deployed in
the real world. They have a flat form (no sub-chains) and
a default-drop policy.

Lines 4ff. of Table I give benchmarks for different firewall
combinations. The order of the firewalls is important as
the first one has to be completely represented in memory,
which causes effort O(|FW1|

2) (where |FWk| is the number
of rules in firewall FWk). The effort for each additional
firewall in the chain is O((|WSi|+|FWi|)·|FWi|) and hence
higher in the worst case. But when starting with a firewall
with small rule-set, we observed that a later combination
with a firewall with a large rule-set does often not increase
the WS size significantly, as most rules of the larger firewall
do not apply. For that case, the complexity goes effectively
down to O(|WSi| · |FWi|), which is a lot smaller than
O(|FWi|

2) if |FWi| is is large but |WSi| is small. If the
firewall processed first has a much larger rule-set than the
others, we have observed that it will often dominate the
runtime.

The columns ”rule-set size” give the number of rules in
the raw input in vendor format, the normalized number
of rules without optimization and the optimized rule-set
size. Benchmarks are given only for TCP for brevity, UDP
and ICMP analysis have comparable results. We do not
have benchmarks for comparison against a policy, as we do
not have a sufficiently formalized policy and hence looking
directly at reachability was more efficient. Comparison
with a policy would incur effort comparable to adding one
more firewall configuration in the size of the negated policy
specification. The idea is that nothing must be able to pass
though the given firewall chain and an additional firewall
representing the negated policy, with the negated policy

representing all forbidden traffic.

As can be seen in Table I, each evaluated optimization
step has significant impact on observed run-time. The final
implementation with all optimizations included has very
reasonable performance even in the presence of firewalls
with large rule-sets.

B. Firewall Evaluation Sequence Optimization

The benchmarks demonstrate that the selection of the
first firewall to be processed has a huge impact on per-
formance. For the first firewall, the Work Set grows for
each rule application, while for later firewalls only rules
that have a non-empty intersection with the Work Set
can increase Work Set size. Our experiences show that the
most restrictive firewall configuration should be processed
first. In many scenarios, this will be the smallest firewall
configuration, measured in number of rules.

C. Rule-Set Representation Optimization

Firewall configuration in vendor-formats often allow
more complex specifications, such as lists of multiple
sources, destinations or services. Decomposing such input
rules into rules using a single box each can results in
a number of normalized rules that is a lot higher than
needed. The reason is that many resulting rules will be
overlapping or adjacent in such a way that they can be
combined. The column ”opt.”under ”rule-set size” in Table
I states the reduced number of rules after optimization and
the column ”input opt.” gives the improved run times and
memory footprints. The runtime for the input optimiza-
tion itself is small, as it only works with a focus of one
raw input rule at a time.

Note that global box combination would be possible,
but combining boxes from different raw rules has two
problems: First, if both accept and drop rules are present,
the combination algorithm has to take rule sequence into
account. And second, in this approach a box cannot be
labeled with the single raw firewall rule it originated from.
This makes the identification of policy-violating rules in
the end-result difficult.

D. Trace Reduction

While the original prototype retained traces for all
operations that changed a box, it turns out these full traces
are only beneficial for debugging. In a security analysis,
only accept and drop actions are relevant and hence it
is enough to add trace information to a box when it is
added to an Accept Set or Drop Set. It is not necessary
to trace when boxes are reduced or split in the WS.
Hence, traces were reduced accordingly. This also means
that there can be at most one trace entry per firewall
in each box contained in the result. The column ”trace
reduction” in Table I states the additional performance
gains. Note that trace reduction was benchmarked with
input optimization applied as well.

E. Core-Loop Ported to C

In a last step, the core loop function apply_rule()

was ported to C and embedded into the Python code.
Contrary to Figure 5, WS, AS and DS are passed to
apply_rule() and are manipulated in-place according to
the rule action. This puts expensive operations, such as
data-structure manipulations, into the C code. No other
special optimizations were done for the C code and in
particular the standard GNU libc memory allocator was
used. The column ”core-loop ported to C” in Table I states
final performance figures. Note that trace reduction and
rule-set representation optimization was applied as well.
In addition, we performed a benchmark calculation for

deployed firewall configuration ”XL”. It has a normalized
rule-set size of 2.8 million rules, which reduces to 300’000
rules after input optimization. Raw rule number is 95.
Representing configuration XL in memory took 20h of
CPU time and resulted in a memory footprint of 900MB.
This shows that firewall configurations of this size can still
be processed with the CNA with reasonable effort.

VIII. Advanced Analysis

A. Computing Two-Sided Reachability

S D. . .
FW 1 FW n

1.
2.

3.

swap
src, dst

Fig. 7. Calculating bidirectional reachability.

Two-sided Reachability allows determining whether an
agent in the source network S can use a service offered
in the destination network D that needs a connection,
for example any service offered over TCP. It also allows
limited comparison with scan results (for example from
nmap [6]), which are sometimes used to verify a firewall
deployment. Figure 7 gives the idea on how to obtain a
two-sided reachability result.

B. Verifying Policy Compliance

Policies can be represented as an undesired reachability
U , with the meaning that if anything in U ⊆ M is actually
reachable through the firewalls, then the policy is violated.
How policies are obtained and converted into this format
is outside of the scope of this work.
To test policy compliance, the actual network reacha-

bility A on each critical network path is calculated. Let V
be the policy-violating reachability. Then V = A∩U . If V
is non-empty, all elements of V represent violations. The
non-compliant firewall rules can be identified by looking
at the trace information attached to elements of V , which

they inherit from A. Other compliance tests are possible
and can be implemented when needed.

IX. Related Work

Reachability Analysis: One alternative to using the
CNA is network scanning, for example with nmap [6].
It should be noted however that this suffers from the
limitations that routing affects scanning and that normal
scanning cannot find undesired unidirectional reachability.
Algorithmic Firewall Analysis: It is possible to for-

malize firewall functionality with a suitable logic and then
use approaches from automated theorem proving to derive
properties and check against violation of conditions. Work
in this area includes FIREMAN [3] by Yuan, Mai, Su,
Chen, Chuah and Mohapatra, which uses a BDD (Binary
Decision Diagram) representation. The idea of using BDDs
is developed further by Liu and Gouda [4], [7], with the
introduction of Firewall Decision Diagrams (FDDs).
The query-engine of Mayer, Wool and Ziskind [8] uses

a different approach. It answers questions on whether a
specific packet would traverse a set of firewalls by using
a rule-based simulator. This is mostly useful to determine
the impact of specific firewall configuration changes. Its
value in a complete firewall security analysis is limited.
The Margrave Tool [9] uses a similar approach.
Commercial Tools: A commercial firewall analyzer is

offered by AlgoSec [10]. This tool seems to be targeted at
maintenance and administration of large numbers (up to
1000) of firewalls. Commercial firewall maintenance tools
with limited audit capabilities are also offered by Tufin
[11] and FireMon [12].

X. Conclusion and Future Work

We have designed and implemented the CNA (Con-
secom Network Analyzer), a tool that calculates network
reachability through a series of firewalls given as a Layer 4
abstraction by symbolic simulation. The primary use is for
real-world security audits that examine firewalls with large
rule-sets. While using set operations to model firewalls
is simple, to the best of our knowledge we are the first
to demonstrate that an abstraction based on intervals
for reachability and firewall rules is efficient enough to
calculate reachability through large deployed firewall con-
figurations in practically useful time and with moderate
memory footprint, while at the same time retaining the
capability to annotate each result sub-set with a full trace

of the applied firewall rules. Automated result annotation
is essential when analyzing firewall chains that include
firewalls with a large number of rules.
One possible direction for future work is optimizing the

CNA. First, the representation of the Work Set can be
improved. Using ideas from geometric search, the Work Set
could be organized into a data-structure that efficiently al-
lows searching for all boxes that intersect a given box. This
could speed up rule application significantly. A second
possible optimization direction is optimization of memory
management. Run-times and memory footprint could be
improved by reducing traces to a fixed size format and by
providing a custom allocator to the core-loop. Finally, the
CNA could be adapted to handle IPv6 in the future. This
may need specific performance optimizations. We plan to
defer IPv6 adaption until there is market demand.

Acknowledgement: We thank the Swiss KTI and Con-
secom AG for funding parts of this work and the anony-
mous reviewers for helpful suggestions on how to improve
the paper.

References

[1] “Wikipedia: Hyperrectangle,” http://en.wikipedia.org/wiki/
Hyperrectangle, last visited January 2012.

[2] P. Eronen and J. Zitting, “An expert system for analyzing
firewall rules,” in Proc. 6th Nordic Worksh. Secure IT Systems,
2001, pp. 100–107.

[3] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mo-
hapatra, “FIREMAN: A Toolkit for FIREwall Modeling and
ANalysis,” in IEEE Symposium on Security and Privacy, 2006,
pp. 199–213.

[4] A. X. Liu and M. G. Gouda, “Diverse firewall design,” in
IEEE Transactions on Parallel and Distributed Systems, 19(8),
August 2008.

[5] “Python Homepage,” http://python.org/, last visited January
2012.

[6] “Nmap Security Scanner,” http://nmap.org/, last visited Jan-
uary 2012.

[7] A. X. Liu and M. G. Gouda, “Firewall policy queries,” in IEEE
Transactions on Parallel and Distributed Systems, 20(6), June
2009.

[8] A. J. Mayer, A. Wool, and E. Ziskind, “Offline firewall analysis,”
Int. J. Inf. Sec., vol. 5, no. 3, pp. 125–144, 2006.

[9] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisher, and S. Kr-
ishnamurthi, “The Margrave Tool for Firewall Analysis,” in
USENIX Large Installation System Administration Conference
(LISA), 2010.

[10] “Algosec Homepage,” http://www.algosec.com/, last visited
January 2012.

[11] “tufin Homepage,” http://www.tufin.com/, last visited January
2012.

[12] “FireMon Homepage,” http://www.firemon.org/, last visited
January 2012.

