
A Fast Worm Scan Detection Tool for VPN Congestion Avoidance

Arno Wagner∗, Thomas Dübendorfer, Roman Hiestand, Christoph Göldi, Bernhard Plattner
Computer Engineering and Networks Laboratory (TIK)

Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zurich
{wagner, duebendorfer, plattner}@tik.ee.ethz.ch,

roman.hiestand@alumni.ethz.ch, christoph@goeldi.org

Contact author: Arno Wagner

Abstract

Finding the cause for congested virtual private network
(VPN) links that connect an office network over the Inter-
net to remote subsidiaries can be a hassle. Scan traffic of
worm infected hosts is one important possible cause. We
developed a scan detection tool, which continuously mon-
itors network traffic on VPN gateway(s) and that reliably
detects and reports worm infected hosts by tracking anoma-
lous TCP, UDP and ICMP traffic. Our tool is not sensitive
to most P2P software and was successfully tested on real
production traffic as well as with traces of captured real and
simulated worm traffic. Our various tests demonstrated a
low false positive rate and a high detection rate. Our open
source tool is an extension to the free intrusion detection
system Bro. It was developed jointly by ETH Zurich and
Open Systems, a company offering managed security ser-
vices, one of which is based on the presented worm scan
detection tool.

Keywords: scan, detection, worm, VPN, gateway, Bro

1 Introduction

Many enterprises connect their subsidiaries over the In-
ternet or through leased lines using Virtual Private Network
(VPN) links. One frequent problem in the operation of
such an overlay network is detection, diagnosis and cor-
rection of link congestion problems. An important source
of such problems is malicious traffic such as scan traffic
from worm-infected hosts. Typically infected machines are
brought in from outside, e.g. by employees that have that
work on their laptops both in the organisational LAN and at
home, but have insufficient security measures in place.

∗Partially funded by the Swiss National Science Foundation under
grant 200021-102026/1 and SWITCH.

Depending on the worm in question, the scanning rate
can be latency-limited, for example in the case of the Code
Red worm [8] that tries to open a TCP connection to each
target. A latency-limited worm generates less traffic for
links with high latency. The scanning rate can also be
bandwidth-limited, as in the case of the Witty worm [17],
which uses a single packet UDP exploit and exhausts the
available uplink bandwidth of the infected host with worm
traffic, since it does not have to wait for answers from the
target hosts.

In both cases manual analysis of the traffic in the link
has to be done first to determine the nature of the traffic
degrading link performance. This is made more difficult
by the presence of varying normal, non-attack traffic. In a
second step, the infected hosts have to be identified and the
site operator has to be contacted and asked to stop the hosts
from generating scan traffic, usually by shutting them down.

This process is labour intensive and can take hours when
done manually. This paper presents an automatic scan de-
tection system that resides on the VPN gateways (which can
be ordinary computers running Linux). The system pre-
sented in this paper is capable of detecting worm scans for
TCP, UDP and ICMP based scanning strategies. It reports
scan characteristics and infected hosts to the overlay net-
work operator. This dramatically increases response time
and reduces the effort needed in dealing with this type of
problem significantly. Note that the primary goal of using
such a system is not the detection of infected hosts, but the
protection of the VPN connectivity against degradation due
to the scan traffic.

The chosen approach is based on the observation that for
TCP normal connections are bidirectional, i.e. connection
attempts are typically successful. In scan traffic generated
by a TCP based worm many scans try to connect to IP ad-
dresses that are not assigned to a host and therefore fail.
Furthermore infected hosts try to connect to many different



hosts within a short time, while uninfected hosts typically
connect to a comparatively small number of other hosts in
the same time interval.

In order to detect UDP or ICMP worm scans, the method
is modified with different threshold values and the impor-
tance of failed connection-attempts is de-emphasised. For
ICMP scans answers of type ICMPdestination unreach-
able are counted as failed connections. Generally, detecting
UDP and ICMP scan traffic takes longer than detecting TCP
scan traffic, but the detection times are still within accept-
able limits.

One important characteristic of any intrusion detection
system (IDS) is a low rate of false positives. The presented
scan detection method has been validated on real VPN links.
The impact of scans that P2P filesharing applications gen-
erate during start-up has been studied and it was found that
these applications usually do not trigger our scan detector.
The method is also able to distinguish between worm scans
and Denial-of-Service (DoS) attacks that flood a single tar-
get or a small number of targets with a stream of scan-like
traffic.

The scan detection tool was developed in a cooperation
between the Communication Systems Group at the Swiss
Federal Institute of Technology Zurich (ETHZ) and Open-
Systems, Zurich, a company that offers, among other secu-
rity services, managed VPN networks to companies world-
wide. The administration of the VPN links and thereby also
the operation of our present worm scan detector is done re-
motely from the central OpenSystems network operations
centre (NOC) in Zurich.

2 Related Work

We tested several existing algorithms for worm and traf-
fic anomaly detection by applying them to network traffic
captured on productive VPN gateways. Due to the nature
of a worm an infected computer needs to scan many others
in order to propagate. One main characteristic of scans is
that many connections that an infected hosts tries to estab-
lish fail due to filtering, non-existence of the target host or
service.

For TCP two common cases of a failed connection at-
tempt occur, which are (1) no answer within a predefined
timeout and (2) a TCP RST packet as answer to the TCP
SYN packet. UDP is not connection oriented and conse-
quently the receiving host does not have to send an answer.
Nevertheless ICMP ”Destination Unreachable” messages in
response to UDP packets can be interpreted as unsuccessful
UDP connection attempts.

In 1990, the Network Security Monitor [10] was one of
the first intrusion detection tools that implemented the “con-
nection counter” algorithm of the University of California
in Davis. It counts the number of connections and can give

an idea when a worm is active but also reports benign hosts
as infected, if they are more active than they have been be-
fore. This method can therefore not be applied to a dynamic
network environment.

The ”failed connection counter” [15] counts the failed
connection attempts. It has shown useful results but is not
able to distinct between failed connection attempts resulting
from scans and from benign programs.

The ”sequential hypothesis test” [12] produced too many
false positives in our network setting and we found it not to
be well suited for an office environment.

The ”entropy” [19] algorithm is based on the idea that the
entropy of the source and destination IP addresses and port
numbers seen in IP packet headers increases or respectively
decreases during an attack. To make entropy calculation
fast, an estimation based on the compressibility of the IP
header fields is used. This algorithm is known to be a good
and economical worm detection algorithm for high speed
links, but would have to be adjusted for traffic in an office
network. We consider an entropy based algorithm a possible
future extension of our scan detection system.

We have implemented the algorithms mentioned above
and tested them with simulated and injected real worm traf-
fic combined with benign traffic in a productive office envi-
ronment of a VPN site. We found that a combination of the
different approaches proved most successful for a reliable
worm scan detection algorithm, which we describe in the
next section.

3 Approach: Scan Traffic Detection in VPN
Links

Our algorithm uses network traffic captured on a VPN
gateway connecting an office network to its remote sub-
sidiaries over the Internet. The idea is to detect worms on
the basis of their typical scan traffic. Many worms search
for random targets in the internal subnet or in the whole IP
range by sending thousands of packets when scanning for
vulnerable targets. Others try to propagate via emails sent
to every email address found on the infected host. Our
algorithm is based on the detection of those characteristic
traffic anomalies.

We define the requirements our algorithm has to fulfill:

• High recognition (true positive) rate

• Very low false positive rate

• Economical use of system resources

• Scalability to variable network sizes

• Adequate response time after infection

2



TCP_HOST_SCAN

< 5 minutes

failed conn.

in < 2 minutes

TCP_BENIGN

TCP_HOST_SAMEPORT_SCAN TCP_HOST_PORT_SCAN

failed conn.

yes

yes

yes yes

yes

no

no

no

first failed TCP connection

TCP_HOST_NOTSAMEPORT_SCAN

WORMWORM

no

no> 100 failed conn.

TCP_SCAN

to >100 hosts in

> 100 hosts on the same to > 300 hosts in
< 5 min.

DoS
TCP_DOS

conn. to < 5 hosts in
> 1200 failed

TCP_SAMEPORT_SCAN
< 4 min

failed conn. to

port in < 5 min.

Figure 1. Finite state diagram for TCP scan detection per hos t

3.1 Adaptive Algorithm

Although our approach is based on similar worm indica-
tors as the other detection methods as discussed in Section
2, its design is different. We use a multi-level approach
which employs different views of the network and of sin-
gle hosts, whith different level of detail. Only hosts which
appear to be infected using low-cost checks have to be in-

vestigated closer. This adaptive detection method allows to
save valuable system resources.

The suggested detection method monitors each host that
tries to initiate a connection individually. At first, all of
the hosts are monitored and tested for a possibly appearing
traffic anomaly. If this general low-cost test marks a host as
suspicious, it will be monitored in a second step in more de-
tail. These steps lead to more and more specific tests which

3



in < 2 minutes

yes

no

failed conn.

yes

yes yes

yes

no

no

no

WORMWORM

no
> 100 hosts on the same to > 300 hosts in

< 5 min.

conn. to < 5 hosts in
> 1200 failed

< 4 min

failed conn. to

port in < 5 min.

< 5 minutes

failed conn.

< 5 minutes

failed conn.
to > 300 hosts in

< 5 minutes

failed conn.
to >100 hosts in

no

no

no

no

no

yes

yes

yes

yesyes

first UDP packet

UDP_BENIGN

> 300 packets

UDP_SCAN

> 20 failed conn.
in < 1 min.

UDP_FAILED

UDP_HOST_FAILED

UDP_HOST_SAMEPORT_FAILED

UDP_SAMEHOST_FAILED

DoS
UDP_DOS_FAILED

UDP_HOST_PORT_FAILED

UDP_NO_FAILED

to > 150 hosts in

UDP_HOST_SCAN

> 150 hosts on the same
failed conn. to

port in < 5 min.

UDP_SAMEPORT_SCAN

> 1200 failed
conn to < 5 hosts in

< 4 min.

DoS
UDP_DOS

UDP_HOST_NOTSAMEPORT_SCAN

UDP_HOST_NOTSAMEPORT_FAILED

UDP_HOST_SAMEPORT_SCAN

WORM WORM
UDP_HOST_PORT_SCAN

Figure 2. Finite state diagram for UDP scan detection per hos t

analyse the behaviour of this host. The test can be done with
new measurements in each decision node, leading to higher
detection latency, or by evaluation all tests on the same data,

leading to higher resource consumption. See Section 3.5 for
details.

4



3.2 Algorithm for TCP

Because of the differences between worms, it is neces-
sary to discuss TCP, UDP and ICMP separately. We illus-
trate the multi-level approach with a flowchart diagram in
Figure 1. It shows the shows the states an individual host
can be in (rectangles), the tests performed in order to de-
termine state-changes (diamonds) and the default state and
final states (rectangles with rounded corners) for TCP scan
detection. Hosts without failed connection attempts are not
tracked and have no state.

A host that originates a failed connection goes into
the TCP BENIGN state. The number of its failed con-
nections is then counted for up to the given time limit.
When the enough failed connections are seen, the new host
state isTCP SCAN. The more detailed tests which fol-
low take into consideration whether packets are sent to
one or multiple targets. Multiple targets are typical for
a worm, while a single target could be a denial of ser-
vice attack. The last tests regard the destination port.
Scans to the same and to different ports have two differ-
ent threshold values. Consequently, a host sending pack-
ets to different hosts but on the same port reaches the state
TCP HOST SAMEPORTSCAN and one scanning to dif-
ferent ports reaches the stateTCP HOST PORT SCAN.

3.3 Algorithm for UDP

UDP is not connection-oriented and we cannot expect
that each transmitted packet causes the receiving host to an-
swer with a packet. Nevertheless a packet that is not an-
swered by a packet in the other direction with reversed port
addresses may still indicate a situation similar to a failed
connection. But still we cannot simply count the number of
unanswered packets to get the number of failed connections,
but have to use a more sophisticated classification scheme.
Figure 2 gives the extended state diagram used for tracking
hosts receiving UDP packets.

In a first step we monitor all hosts which have sent UDP
packets and only consider those further which have sent
packets with a rate of at least 5 packets per second. Due to
the fact that some firewall or hosts reject UDP (i.e. send an
ICMP ”Destination Unreachable” packet) packets to nonex-
isting host or services, while others just ignore them (i.e.
drop them quietly), we have to consider these two cases sep-
arately in the next levels of checking the sending host for a
possible worm infection. The proximate tests are similar to
the ones done with TCP but differ based on the firewall be-
haviour. The detection of a UDP worm with the same scan
rate as a TCP worm takes longer because there are more
tests done until a final decision about an infection can be
made. On the other hand UDP worms tend to be faster,
since they often use single-packet exploits, which is basi-

cally impossible for TCP worms.

3.4 Algorithm for ICMP

In the past, ICMP ”Echo Request” scans have been used
by some worms to find out if a target exists and therefore we
have to detect these scans too. For unreachable hosts, some
firewalls reply to ICMP ”Echo Request” packets with ICMP
”Destination Unreachable” while others just drop them. We
monitor both cases and call them ICMP failed attempts. The
second case uses a timeout value. The flowchart diagram for
ICMP is similar to TCP, but it is simpler since there is not
need for port handling with ICMP. Consequently, a host can
only reach one worm state.

3.5 Efficiency Considerations

As an implementation choice, each test can be done se-
quentailly based on a new measurement. This is the ap-
proach we use in our implementation. In each decision node
in Figures 1 and 2 a new measurement is done, running
not longer than the time stated in the decision node. This
leads to low memory needs since each observed connection
attempt can be processed immediately and then discarded.
Only the state of each observed host and the counter for the
test currently done for it needs to be kept in memory. The
maximum detection time is the sum of all individual mea-
surement times on a path to a final state in the flowchart. For
TCP detection time would be up to 17 minutes to reach the
state on the bottom, right in Figure 1 from the point where
the first scan traffic is observed from a host. For UDP the
maximum detection time is 18 minutes to reach the lower or
upper right state in Figure 2 after the first connection from
an infected host was seen.

Keep in mind that the conditions are evaluated incremen-
tially, i.e. a test can be sucessfully evaluated when eitherthe
number of specific failed connections has been observed
or the time limit has been exceeded. Especially for hosts
that generate a lot of scan traffic, detection is significantly
faster than the upper limits. This measn that the greater the
amount of scan-traffic from a host, and hence the potential
impact on the VPN link, the faster the scanning host will be
identified. For this reason the maximum detection latency
is a secondary concern. Since most active hosts never leave
the stateTCP BENIGN or UDP BENINGN respectively,
this approach is very memory efficient. As a result our im-
plementation is especially suitable to run on VPN gateway
nodes with limited resources.

Alternatively, input data could be stored and re-evaluated
for each decision node in the flowcharts. This would require
storing up to 5 minutes of observed network data for each
host that enters stateTCP BENIGN or UDP BENINGN
respectively. This data interval could then be used to run

5



through the complete flowchart in an incremental fashion,
i.e. whenever a test cannot be evaluated conclusively, addi-
tional data is recorded until it can. The disadvantage is that
a lot of data has to be kept in memory, while there is only
a moderate speed gain. Still, if maximum detection latency
is the most important consideration, this approach could be
used to implement our detection algorithm.

4 Implementation

We use the freely available Bro IDS Framework [1] to
implement our scan detection algorithm. Bro is designed for
high-speed monitoring of network traffic and real-time noti-
fication. The architecture of Bro allows integrating own al-
gorithms utilizing all the functionality which Bro provides.
This can be done using the scripting language Bro provides.
The so called policy script interpreter translates all scripts
to C code when the program is started.

Bro is based on libpcap library, which makes it highly
portable and lets Bro run on recorded tcpdump files as an
alternative to monitoring live traffic on a network interface.
Additionally, libpcap can be instructed to pass only specific
packets to Bro and thereby reduce the traffic load which Bro
has to process.

4.1 Scan Detection Policy Scripts

The implementation of our algorithm has been done by
writing policy script files for the Bro IDS framework. The
scan detection architecture and the corresponding Bro pol-
icy script files which contain the implementation are shown
in Figure 3. The main fileosag-sd.bro adjusts Bro in-
ternal settings and contains global variables and tables. Fur-
ther, it includes all parameters which control the scan detec-
tion and loads the files shown in the lowest layer in Figure 3.

The four filesosag-tcp.bro, osag-smtp.bro,
osag-udp.bro and osag-icmp.bro implement the
scan detection for the different protocols. This includes the
interception of events, the subsequent calling of the corre-
sponding functions and the finite state machines which con-
trol the state of each source host seen.

The functions for counting events and checking the be-
haviour of the source hosts are implemented in the files
shown in the third line of Figure 3. The exceedance of
thresholds will be recognized here.

The notification when a host changes its state requires
additional functions, which are implemented in the file
osag-notification.bro . This file provides func-
tions for saving information about the behaviour of a sus-
picious host and for writing this information to files or for
passing it to syslog [16]. Different types of messages can
be written to syslog depending on the type of the occurring

event. Hosts which never reach a worm state but several
time pass the first test are reported assuspicious.

The script fileosag-infection.bro provides func-
tions which are called when a host is recognised as infected.
A list of these hosts is maintained. An infected host remains
24 hours in this list and during this time packets from this
host are not observed any more. A Bro mechanism allows
us to update the libpcap filter and block the packet stream of
such an infected host on a lower level. This can save a lot of
system resources when an infected host has been detected.

4.2 IP Spoofing

An infected host could send packets with faked IP source
addresses. This behaviour is known as IP spoofing. In our
solution we store the state and several table entries for each
source IP address. Consequently, a scanning host sending
packets which all have different source IP addresses causes
a high memory and CPU consumption. Therefore, we have
to deal with this issue.

The length of each host state table is tracked and warn-
ings are written to syslog if a table exceeds a predefined
length (e.g. number of actual hosts in an observed office
network). Additionally, an external process can be started
to observe the CPU and memory usage of Bro and to restart
Bro if CPU and/or memory usage exceed a certain limit.

4.3 Resource Consumption

The resource consumption of the detection tool is an im-
portant issue since we want to run it on the VPN gateway
together with firewall and other services. The consumption
of CPU and memory mainly depends on the amount of scan
traffic and the number of infected hosts in the observed net-
work. We have tested the scan detection tool with one and
with several infected hosts which were scanning for targets
with a high rate. The scan detection algorithm was running
on a VPN gateway with an Intel x86 Pentium 4 2.4 GHz pro-
cessor, 1 GB RAM, two 100 Mbit/s and two 1 Gbit/sec net-
work interfaces. The VPN gateway is running on a highly
customized Linux (Kernel 2.4).

The number of infected hosts has a big impact on the re-
source consumption of the scan detection of Bro and there-
fore, we simulated different numbers of infected hosts. To
simulate the worm attacks we have used the MACE [13]
worm simulation tool. The performance tests showed nearly
the same results for UDP and TCP. Therefore, all the fol-
lowing conclusions which are presented for TCP also hold
for UDP.

Figure 4 shows the CPU and memory usage when four
hosts are infected. If up to four hosts are infected, the scan
detection needs less than 1% CPU time and less than 8 MB
of memory.

6



scan detection
(osag-sd.bro)

tcp scans
(osag-tcp.bro)

udp scans
(osag-udp.bro)

icmp scans
(osag-icmp.bro)

smtp scans
(osag-smtp.bro)

os
ag

-ic
m

p-
sc

an
.b

ro


os
ag

-ic
m

p-
do

s.
br

o

os
ag

-ic
m

p-
ho

st
-s

ca
n.

br
o

os
ag

-t
cp

-s
ca

n.
br

o

os
ag

-t
cp

-h
os

t-
sc

an
.b

ro


os
ag

-t
cp

-h
os

t-
sa

m
ep

or
t-

sc
an

.b
ro



os
ag

-t
cp

-d
os

.b
ro



os
ag

-t
cp

-h
os

t-
po

rt
-s

ca
n.

br
o

os
ag

-s
m

tp
-s

ca
n.

br
o

Main File
System Settings
Global Variables

Parameters

Control Structure
Finite State Machines

Event Interception
Function Calls

Scan Check Functions
Event Counters

os
ag

-u
dp

-s
ca

n.
br

o

os
ag

-u
dp

-h
os

t-
sc

an
.b

ro


os
ag

-u
dp

-h
os

t-
sa

m
ep

or
t-

sc
an

.b
ro



os
ag

-u
dp

-d
os

.b
ro



os
ag

-u
dp

-h
os

t-
po

rt
-s

ca
n.

br
o

os
ag

-u
dp

-f
ai

le
d.

br
o

os
ag

-u
dp

-h
os

t-
fa

ile
d.

br
o

os
ag

-u
dp

-h
os

t-
sa

m
ep

or
t-

fa
ile

d.
br

o

os
ag

-u
dp

-d
os

-f
ai

le
d.

br
o

os
ag

-u
dp

-h
os

t-
po

rt
-f

ai
le

d.
br

o

infection
(osag-infection.bro)

notification
(osag-notification.bro)

Figure 3. Scan detection architecture and corresponding im plementation files

The detection of 252 infected hosts uses up to 75% CPU
during one minute. Figure 5 shows that after 2.5 minutes
when all 252 infected hosts have been detected, the CPU
usage falls off as the traffic of these hosts is now excluded
from capturing by libpcap. The memory usage does not
exceed 20 MB.

Consequently, we can summarise that the scan detection
tool does not exceed a memory usage of 20 MB and the
CPU usage is quite low during normal operation. CPU load
increases in case of many infected host, but only for a short
time.

4.4 P2P Traffic

P2P overlay networks and their clients are used to e.g.
share files, make phone calls or exchange instant messages
over the Internet. We found that such P2P clients are still in
frequent use also within companies.

Many P2P clients scan for other clients using host lists.
These ”contact” lists are built over time and often contain
many hosts which are unreachable. Seome do not run the
specific P2P client anymore, while others are simply offline
or dynamically assigned IP addresses that refer to changing
hosts. The scan for these clients is similar to a worm scan
for targets. Depending on the list length and the scan rate
hosts with P2P clients can cause the scan detection tool to
generate suspicion messages or warnings.

Most of the common P2P clients∗ like Freenet [4], Kazaa
Lite [5], DC++ [2] and Limewire [6] have not caused the

∗We tested Freenet v0.5.2.8, Kazaa Lite v2.61d, DC++ v0.668 and
Limewire v4.2.6.

scan detection tool to generate any messages.
eMule† [3] caused the algorithm to generate a suspicion

warning if the client could not connect to the P2P network
because all the traffic was blocked by the firewall. When
an eMule client was connected to the network and searches
were performed, it sent hundreds of packets to hosts which
did not reply and therefore it was detected as a worm. This
case could be reported as a false positive pertaining to worm
detection. However, from a network operations perspective,
the detection of eMule can be rated as a success because of
the large amount of (unwanted) scan traffic it generates.

4.5 Worm Detection Validation

Our tool was tested with real worms - among others with
Blaster [7] and SQL Slammer [14].

According to our specification a host has to send 300
TCP packets on the same port until it is detected as infected.
Blaster was reported to scan with∼11 scan packets/s and
therefore, we expect to detect it within approximately 27
seconds. Because the Blaster worm in our setting started to
scan at a much lower rate with∼3 scan packets/s the de-
tection took longer and we detected this worm 57.4 seconds
after the infected host had sent its first scan packet.

The detection of a SQL Slammer infected SQL server is
highly dependent on the firewall settings. We tested it with
a firewall that does not send any ICMP unreachable packets
and detected it therefore rather late after 74.86 seconds. In
an environment with ICMP unreachable packets it would be
detected within less than 10 seconds.

†We tested eMule v0.44d.

7



 0

 1

0 1 2 3 4 5 6 7 8 9 10

cp
u 

us
ag

e 
(%

)

time (min)

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

m
em

or
y 

us
ag

e 
(M

B
)

time (min)

Figure 4. CPU and memory usage with four
infected hosts (TCP worm)

The scan detection tool has detected all the worms within
a reasonable time. Further we have tested the tool with more
than 22 hours of productive office traffic at 15 different sites
of various companies worldwide and the algorithm has not
caused any false positives in all these tests. The tool has
proven to have a very low false positive rate, with the one
exception of sensitivity searches done with the eMule P2P
client when it is not connected to the eMule network.

5 Conclusions and Outlook

Our scan detection tool uses a new detection algorithm
that is a combination of several different approaches for
worm detection. Our tool was implemented for the intrusion
detection system BRO [1] and installed on several dozens
VPN gateways. We could successfully validate it on office
network traffic. It reliably detected scan traffic of worm in-
fected hosts while at the same time not being sensitive to
P2P traffic, which results in a very low false positive rate.

The algorithm of our tool offers a powerful scan detec-
tion using low system resources and is still simple enough

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10

cp
u 

us
ag

e 
(%

)

time (min)

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

m
em

or
y 

us
ag

e 
(M

B
)

time (min)

Figure 5. CPU and memory usage with 252
infected hosts (TCP worm)

such that it can be understand in detail. The tool scales to
larger company networks and is also applicable to networks
with several hundred infected hosts that are scanning con-
currently. Timely detection of maliciously scanning hosts
has shown to improve reaction times of network adminis-
trators considerably as they were notified by our tool before
the users called the helpdesk upon real worm infections. In-
stallation of the tool is quick and thanks to syslog support,
the tool’s output can be tracked remotely and integrated in
most network security information management suites.

The first version of the detection tool was developed in
the context of the DDoSVax project [18] and the Master’s
thesis [11] of Roman Hiestand and Christoph Göldi, which
was co-supervised by Open Systems and was awarded the
prestigious Fritz Kutter-Preis in 2005 [9].

The source code of the presented scan detection system
can be obtained free for non-commercial use by contacting
Arno Wagner. Possible extensions to the tool are the sup-
port for worm specific traffic signatures in order to identify
the exact cause for scan traffic detected or an incorporation
of traffic policies (that e.g. state how much scan-like traffic

8



is tolerable) depending on time and other factors. Detect-
ing P2P traffic that might also congest VPN links would be
a complementary extension as well as incorporating addi-
tional promising detection algorithms (e.g. entropy based
methods) for additional tests for suspicious host behaviour.

6 Acknowledgements

We thank Martin Bosshardt, Stefan Lampart, and Roel
Vandewall from Open Systems for providing the possibility
and support for this industry inspired research project and
their co-supervision of the students. We thank Bernhard
Tellenbach for valuable feedback on the paper.

References

[1] Bro intrusion detection system.http://www.bro-ids.
org/ , June 2005.

[2] Dc++ your files, your ways, no limits. http://
dcplusplus.sourceforge.net , Jan. 2005.

[3] emule-project.net - official emule site. downloads, help,
docu, news, ... http://www.emule-project.net ,
Jan. 2005.

[4] The freenet project - index - beginner.http://www.
freenetproject.org , Jan. 2005.

[5] K++ / kazaa lite 2.6.1 deutsch - mp3 download software
- [mpex.net]. http://www.mpex.net/software/
details/kazaalite.html , Jan. 2005.

[6] Limewire.org - open source p2p file sharing.http://
www.limewire.org , Jan. 2005.

[7] CERT. Security Advisory: MS.Blaster (CA-2003-
20). http://www.cert.org/advisories/
CA-2003-20.html , 2004.

[8] R. Danyliw and A. Householder. CERT Advisory CA-2001-
19 ”Code Red” Worm Exploiting Buffer verflow.http://
www.cert.org/advisories/CA-2001-19.html ,
2001.

[9] ETHZ. Fritz-Kutter Preis. http://www.
kutter-fonds.ethz.ch/preistr.html , 2005.

[10] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee,
J. Wood, and D. Wolber. A network security monitor. In
Proceedings of the IEEE Computer Society Symposium, Re-
search in Security and Privacy, pages 296–303, May 1990.

[11] R. Hiestand and C. G”oldi. Scan detection based identifica-
tion of worm-infected hosts. Master’s thesis, ETH Zurich,
2005.

[12] A. W. B. Jaeyeon Jung, Vern Paxson and H. Balakrishnan.
Fast portscan detection using sequential hypothesis testing.
In Proceedings of the IEEE Symposium on Security and Pri-
vacy, May 2004.

[13] P. B. Joel Sommers, Vinod Yegneswaran. A framework
for malicious workload generation.http://www.cs.
wisc.edu/˜jsommers/pubs/p82-sommers.pdf ,
Oct. 2004.

[14] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the Slammer Worm.IEEE Security
and Privacy, 4(1):33–39, July 2003.

[15] V. Paxson. Bro: A system for detection network intruders
in real-time. http://www.ece.cmu.edu/˜adrian/
731/readings/paxson99-bro.pdf , Jan. 1998.

[16] J. Schoenwaelder. syslog - write messages to the system
logger. http://www.infodrom.org/projects/
sysklogd/ , Jan. 2001.

[17] US-CERT. Vulnerability Note: Witty (VU#947254).http:
//www.kb.cert.org/vuls/id/947254 , 2004.

[18] A. Wagner, T. Dübendorfer, and B. Plattner. The DDoSVax
project at ETH Zürich. http://www.tik.ee.ethz.
ch/˜ddosvax/ , 2005.

[19] A. Wagner and B. Plattner. Entropy Based Worm and
Anomaly Detection in Fast IP Networks. InProceedings of
14th IEEE WET ICE / STCA security workshop. IEEE, June
2005.

9


