
Flow-Based Identification of P2P Heavy-Hitters

Arno Wagner∗ Thomas Dübendorfer∗ Lukas Hämmerle† Bernhard Plattner∗

∗Communication Systems Laboratory, Swiss Federal Institute of Technology Zurich,

{wagner, plattner}@tik.ee.ethz.ch, thomas@duebendorfer.ch
† SWITCH, Switzerland, haemmerle@switch.ch

Abstract

One major new and often not welcome source of In-

ternet traffic is P2P filesharing traffic. Banning P2P

usage is not always possible or enforcible, especially in

a university environment. A more restrained approach

allows P2P usage, but limits the available bandwidth.

This approach fails when users start to use non-default

ports for the client software. We have developed the

PeerTracker algorithm that allows detection of running

P2P clients from NetFlow data in near real-time. The

algorithm is especially suitable to identify clients that

generate large amounts of traffic and can easily be used

to find P2P heavy-hitters. A prototype system based

on the PeerTracker algorithm is currently used by the

network operations staff at the Swiss Federal Institute

of Technology Zurich. We present measurements done

on a medium sized Internet backbone and discuss ac-

curacy issues, as well as possibilities and results from

validation of the detection algorithm by direct polling

in real-time.

1. Introduction

P2P filesharing is a newer Internet application that
generates large amounts of traffic. It seems even to be
one of the driving factors for home-users to get broad-
band Internet connections. It also has become a signif-
icant factor in the total Internet bandwidth usage by
universities and other organisations. While in some en-
vironments a complete ban on P2P filesharing can be a
solution, this gets more and more difficult as legitimate
uses grow. The Swiss Federal Institute of Technology
at Zurich (ETH Zurich) has adopted an approach of
allowing P2P filesharing, but with limited bandwidth.
The default ports of the most popular P2P fileshar-
ing applications are shaped to a combined maximum
Bandwidth of 10Mbit/s. There is a relatively small

number of ”heavy hitters” that consume a large share
of the overall P2P bandwidth and avoid the use of de-
fault ports and hence the bandwidth limitations. In
fast network connections, such as the gigabit ETH In-
ternet connectivity, it is difficult to identify and mon-
itor P2P users for their bandwidth consumption. If
heavy hitters can be identified, they can be warned to
reduce their bandwidth usage or, if that does prove in-
effective, special filters or administrative action can be
used against them. In this way P2P traffic can be re-
duced without having to impose drastic restrictions on
a larger user population.

To this end, we have developed the PeerTracker al-
gorithm that identifies P2P users based on Cisco Net-
Flow [4]. It determines hosts participating in the most
common P2P networks and detects which port setting
they use. This information can then be used to de-
termine P2P bandwidth usage by the identified hosts.
We present the PeerTracker algorithm as well as results
from measurements done in the SWITCH [3] network,
a medium sized Internet backbone in Switzerland. We
discuss detection accuracy issues and give the results of
work done on validation of the PeerTracker algorithm
by real-time polling of identified P2P hosts. Note that
the PeerTracker cannot identify which files are shared.

A prototypical implementation of the PeerTracker
algorithm, fitted with a web-interface, is currently in
use at the central network services of ETH Zurich in
a monitoring-only set-up for hosts in the ETH Zurich
network. A software release under the GPL is planned.

The paper is organised as follows: Section 2 gives an
overview of the data this work is based on and a short
description of the DDoSVax project that this work is
part of. Section 3 briefly discusses current trends in
P2P filesharing. Section 4 presents the PeerTracker
Algorithm followed by PeerTracker measurements in
Section 5. Section 6 discusses validation work. Section
7 has a brief survey over related work and the paper
finishes in section 8 with a conclusion.

2. Backbone Flow-Level Traces

2.1. DDoSVax project

Border
Router

NetFlow
duplicatior

Online
analysis

Capturing

Accounting

Aggregated Network Traffic
(CISCO Netflow v5)

Offline
analysisBorder

Router

Prepro−
cessing &

Compression

Long−term
archive

DDosVax infrastructure

Figure 1. The DDoSVax infrastructure

The DDoSVax[5] project maintains a large archive
NetFlow[4] data which is provided by the four border
gateway routers of the medium-sized backbone AS559
network operated by SWITCH[3]. This network
connects all Swiss universities, universities of applied
sciences and some research institutes.

Figure 1 shows the overall set-up. The SWITCH
IP address range contains about 2.2 million addresses,
which approximately corresponds to a /11 network. In
2003, SWITCH carried around 5% of all Swiss Internet
traffic [10]. In 2004, we captured on average 60 mil-
lion NetFlow records per hour, which is the full, non-
sampled number of flows seen by the SWITCH border
routers. Our data repository contains the SWITCH
traffic data starting from the beginning of 2003 to the
present.

2.2. NetFlow Data

Cisco’s NetFlow [4] format version 5 that we use
defines a ”flow” as a unidirectional stream of packets
from one host to another. A flow is reported as a tuple
of source/destination IP address, source/destination
port, IP protocol type (i.e. TCP, UDP, other), pack-
ets/flow, number of network layer bytes/flow, time of
first/last packet in this flow, routing-specific and other
parameters.

For example for each TCP connection crossing the
backbone border routers at least two flows are reported,
one for each direction. Due to asymmetrical routing,
it is possible that the two unidirectional flows forming
one connection are reported by different routers. Also
single packets, such as the single or double SYN from a
failed TCP connection attempts create one flow. In ad-
dition the router sometimes accumulate several UDP,
ICMP or other packets into one flow record.

3. P2P Filesharing

The P2P community has developed and continues
to develop many different and incompatible file shar-
ing network technologies at a fast pace. As the P2P
users are mostly interested in getting access to a large
selection of interesting files, P2P clients that support
simultaneous file sharing in multiple networks were de-
veloped that shielded the user somewhat from the id-
iosyncrasies of the underlying networks. Figure 2 gives
an overview of the interrelationship of P2P clients and
P2P networks as of mid-2004.

Our PeerTracker can track the population and de-
tect heavy hitters of the eDonkey, Overnet, Kademlia
(eMule), Gnutella, FastTrack, and BitTorrent P2P net-
works.

4. PeerTracker: Algorithm

The measurements were done with an UPFrame [6]
plug-in. UPFrame is a plug-in framework for process-
ing UDP packets. It is well suited for NetFlow data
processing in real-time, since NetFlow data is exported
from routers as a stream of UDP packets. The P2P
traffic itself can be TCP or UDP. We use the term ”de-
fault port of a P2P system” to also include the choice
of TCP or UDP. The plug-in collects data about the
active hosts in the SWITCH network and the kind of
traffic they generate. This data form the basis of the
peer detection.

Figure 3 shows the state diagram for each individual
peer in the PeerTracker. When a network connection is
detected each endpoint host becomes a candidate peer.
A candidate peer that has more P2P traffic it becomes
an active peer and is reported as active. Otherwise is
becomes a non-peer after it has had no P2P traffic for
a probation period (900 seconds) and is deleted. Each
active peer is monitored for further P2P activity. After
a maximum time without P2P traffic (600 seconds) it
becomes a dead peer. Each dead peer is still monitored
for P2P activity but not reported as active anymore.
When a dead peer has P2P activity, it becomes active
again. After a second time interval, the maximum af-
terlife (1 hour) without P2P activity a dead peer is con-
sidered gone and is deleted from the internal state of
the PeerTracker.

The decision whether a network flow is a P2P flow is
made based on the port information collected. If a P2P
client uses a non-default listening port (e.g. in order to
circumvent traffic shaping) the peer still will communi-
cate with other peers on using the default port(s) from
time to time. The last 100 local and remote ports (TCP
and UDP) that were used to communicate are stored

eMule

eDonkey

Gnutella

FastTrack/iMesh

BitTorrent

BitTorrent
Azureus
...Signalling

connection
File−transfer
connection

Server/
Supernode/
Tracker

Client

LimeWire
Bearshare
Shareaza

... Overnet eDonkey2000
......

Grokster
iMesh
KaZaA

Overnet

Kademlia

mlDonkey

Figure 2. P2P Network and Client Overview

for every observed host, together with the amount of
observed traffic on the individual ports. Traffic with
one or both ports not in the range 1024-30000 (TCP
and UDP) is ignored, since we found that most P2P
traffic uses these ports. With reasonable threshold val-
ues on traffic amount (different for host within the
SWITCH network and hosts outside) the most used
local and remote ports allow the determination which
P2P network a specific host participates in. This is
done at the end of every measurement interval (900
seconds). Although some hosts can be part of several
P2P networks (see Figure 2) they are accounted only
to one P2P network, but can be in different networks
in different measurement intervals.

For the P2P traffic estimation we determine a lower
and an upper bound. The lower bound is all P2P traffic
were at least one side uses a default port. The base
assumption is that the main P2P default ports are well
known enough by now and no other application has
reason to use them.

The upper bound also counts all traffic were source
and destination ports are above 1023 and one side was
identified as P2P host. The effective P2P traffic is
expected to be between these two bounds, and likely
closer to the upper bound, because in particular P2P
heavy-hitters rarely run other applications that cause
large amounts of traffic with port numbers above 1023
on both sides. Typical non-P2P applications with port
numbers on both sides larger than 1023 are audio and
video streaming and online gaming, all of which do not
run well on hosts that also run a P2P client.

Figure 3. PeerTracker hosts state diagram

5. PeerTracker: Measurements

Due to traffic encryption and traffic hiding tech-
niques used by some current P2P systems, the accurate
identification of P2P traffic is difficult, even if packet
inspection methods are used. Nevertheless, our Net-
Flow based approach can provide good estimations for
the effective P2P traffic, even for networks with gigabit
links that could hardly be analysed with packet inspec-
tion methods.

Identification of peers and their traffic is especially
difficult if they have a low activity. This is an issue
for all two-tier systems in which ordinary peers mainly
communicate with a super peer and have few file trans-
fers. Peers from one-tier systems like Overnet can be
identified better because they communicate with many
other peers even if no file transfers are in progress.

In a 30 day measurement (August 2004) a total of
2982 P2P hosts (unique IPs) could be identified in the
SWITCH network, 53.4% of which were DHCP or VPN

users. It could be shown that the number of web users
is proportional to the number of P2P users, since both
numbers decreased by 15% during the holiday season
in a second measurement.

The P2P clients BitTorrent and Gnutella had a
much higher fluctuation in number of active users than
other P2P clients like Overnet. 160 peers (5.3%) were
active longer than 10 days.

The amount of FastTrack peers and traffic found
was surprisingly low in spite of the fact that FastTrack
was at the time the measurements where made still he
P2P network with the most users. The reason for this
could be that FastTrack is not very popular among the
SWITCH P2P users because of fake files, the RIAA
P2P user prosecution or the universities traffic filtering
measures. Another reason could be that FastTrack is
the most difficult to identify network because its de-
fault port usage is very low in comparison to the other
observed P2P systems as can be seen for TCP in Ta-
ble 1. Note that the default port usage for a specific
candidate peer is determined by how often the spe-
cific default port was seen in the last 100 port numbers
(>1023) seen in connections from and to the candidate
peer. Once a peer has been identified as belonging to a
specific P2P network, this number is an estimation of
how many peers in that network use the default port.
The estimation is most accurate if the specific peer has
no other network activity besides P2P traffic and de-
grades otherwise. Still, we believe these estimates are
reasonable.

P2P System Default port usage

BitTorrent 70.0 %
FastTrack 8.3 %
Gnutella 58.6 %
eDonkey 55.6 %
Overnet 83.9 %
Kademlia 66.6 %

Table 1. P2P ports, 8 day PeerTracker mea-
surement end of 2004

P2P traffic in the SWITCH network is quite sub-
stantial. The lower bound for P2P traffic (stateless
P2P default port identification) significantly lower than
the upper bound (all traffic from PeerTracker iden-
tified hosts) for all observed P2P systems (Table 2),
which means that quite some P2P traffic cannot be ac-
curately estimated using only a stateless P2P default
port method.

BitTorrent P2P users cause about as much traffic as
eDonkey, Overnet and Kademlia users together, as can
be seen in Figure 2. All peers of the SWITCH net-

work generate 1.6 times more traffic to non-SWITCH
hosts than incoming traffic, thus making the SWITCH
network a content provider.

This is probably due to the fast Internet connection
most SWITCH users have and the traffic shaping mech-
anisms that some universities in the SWITCH network
use. Users within the university network hope to evade
the traffic limiting by using non-default listening ports.
However, this has no influence on their download rates
because most external users use default listening ports.
On the contrary, external users can download from in-
ternal users without being influenced by the traffic lim-
itations because neither source nor destination port for
these downloads are default ports.

6. Result Validation

The PeerTracker tries to identify P2P hosts and the
used P2P network only on network flows seen, but
makes no attempt to check its results in any other way.
It is completely invisible on the network. There are
two possible failure modes: False positives are hosts
that the PeerTracker reports as having a P2P client
running, while in fact they do not. False negatives are
hosts that run a P2P client but are not identified by
the PeerTracker.

It is difficult to identify false negatives. From man-
ual examination of the flow-level data and comparison
with the PeerTracker output we found that while there
are unidentified P2P clients, these hosts have only very
limited P2P activity and do not contribute significantly
to the overall traffic. Manual examination involved
looking at all flows generated by candidate peers that
did not reach the threshold values. The typical situa-
tion found was that the suspect P2P traffic was clearly
identifiable as P2P traffic, but low in volume.

In order to identify false positives, we have imple-
mented an experimental extension to the PeerTracker
that tries to determine whether hosts identified by the
PeerTracker are actually running the indicated P2P
client by actively polling them over the network. Table
3 gives a short overview of the polling methods used.
In practice a three-staged approach was found to be
most effective:

1. Use an ICMP ”echo request” to determine whether
an identified host is reachable.

2. Use a TCP ”connection attempt” (a.k.a. ”TCP-
ping”) on the identified P2P ports to determine
whether the ports can be contacted.

3. Use the appropriate application-layer handshake
from from Table 3 to determine whether the Peer-

P2P System P2P lower bound P2P upper bound

BitTorrent 55.4 Mbit/s (12.2 %) 90.1 Mbit/s (19.9 %)
FastTrack 1.8 Mbit/s (0.4 %) 12.3 Mbit/s (2.7 %)
Gnutella 5.1 Mbit/s (1.1 %) 10.7 Mbit/s (2.4 %)

eDonkey, Overnet, Kademlia 47.7 Mbit/s (10.5 %) 82.1 Mbit/s (18.1 %)

Total P2P 110.0 Mbit/s (24.4 %) 195.2 Mbit/s (43.1 %)

Table 2. P2P traffic bounds and percentage of total SWITCH tra ffic (August 2004)

P2P System Polling method

FastTrack Request: GET /.files HTTP/1.0

Response: HTTP 1.0 403 Forbidden <number 1> <number 2>

or HTTP/1.0 404 Not Found/nX-Kazaa-<username>
Gnutella Request: GNUTELLA CONNECT/<version>

Response: Gnutella <status>
eDonkey, Overnet, Kademlia Request: Binary: 0xE3 <length> 0x01 0x10 <MD4 hash> <ID> <port>

Response: Binary: 0xE3 . . .

eMule Same as eDonkey, but replace initial byte with 0xC5.
BitTorrent Unsolved. Seems to need knowledge of a shared file on the target peer.

Table 3. Polling methods for different P2P clients (TCP, to c onfigured port)

P2P System TCP P2P-client

eDonkey, Overnet, Kademlia 50% 41%
Gnutella 53% 30%
FastTrack 51% 41%
Total 51% 38%

Table 4. Positive polling answers

Tracker identified P2P client is really running on
the target host.

The polling was done with up to 200 parallel threads
to reduce the effects of unreachable hosts. The time
needed to verify the peer sets did not exceed three
minutes, while the delivery and processing delay of the
NetFlow data in the PeerTracker was in the order of a
few minutes.

The results of a representative measurement from
February 2005 can be found in Table 4. The ICMP
results are not listed, since 99% of the hosts were ICMP
reachable. From the table it can be seen that roughly
half of the identified hosts are not reachable via TCP,
likely due to Network Address Translation (NAT) and
firewalls that prevent connections initiated by outside
hosts.

The unsuccessful polling attempts present an upper
limit on the number of false positives. The main rea-
sons for unsuccessful P2P client polling identified in a
manual analysis are that the PeerTracker sometimes
reports the wrong P2P network for a host, that espe-
cially Gnutella hosts answer in a variety of ways, some

not expected by the polling code, and misdetection by
the PeerTracker algorithm.

7. Related Work

While there are numerous measurements studies
that use packet inspection [14, 8, 13, 9] for traffic iden-
tification, recently some have been published that use
flow-level heuristics [7, 16, 11]. Flow-level identification
is more robust against protocol changes of P2P clients
and less resource demanding. It is relatively unprob-
lematic with regard to privacy issues. These advan-
tages come at the price of smaller accuracy and they
might be circumvented by more sophisticated camou-
flage techniques in the future. Flow-based approaches
are also slower, since they need a certain number of
flows from a host to determine whether it runs a P2P
client or not.

We are aware of the following flow-based efforts:

• In [15] signalling and download traffic was mea-
sured in a large ISP network using state-less de-
fault port number detection. Considered P2P net-
works were FastTrack, Gnutella and Direct Con-
nect.

• An interesting approach is presented in [11]. The
idea is to relate flows to each other according
to source and destination port numbers using a
flow relation map heuristic with priorities and
SYN/ACKs to identify listening port. The method
is not described very detailed though.

• In a campus network and the network of a re-
search institute with about 2200 students and re-
searchers, captured the first 64 Bytes [16]. The
approach used for identification is, that unknown
flows are induced by flows of known traffic. They
used a time window to find induced flows. The
higher the window the more ”identified” traffic re-
sulted. They also stated, that false positives can’t
be recognised without checking the payload.

• Flow measurements in the backbone of a large ISP
were done in [7] for May 2002 and January 2003.
The researchers determined the server port using
the IANA[2] port numbers and the more detailed
Graffiti [1] port table, giving precedence to well-
known ports. Unclassified traffic was grouped in a
”TCP-big”class that includes flows with more than
100 KB data transmitted in less than 30 minutes.
They noted that identified P2P traffic decreased in
January 2003 but the TCP-big traffic dramatically
increased (10.5 times for outgoing and 6 times for
incoming directions). Moreover they found that
the TCP-big traffic had a strong correlation with
P2P traffic.

8. Conclusions

We presented an efficient P2P client detection,
classification and population tracking algorithm that
uses flow-level traffic information exported by Internet
routers. It is well suited to find and track heavy-hitters
of the eDonkey, Overnet, Kademlia (eMule), Gnutella,
FastTrack, and BitTorrent P2P networks. We also val-
idated detected peers by an application-level polling.
Our results confirmed a good lower accuracy bound
that is well suited for P2P heavy hitter detection. How-
ever, it is not optimally suited to detect low traffic P2P
nodes. A validation of BitTorrent clients was not pos-
sible due to the specifics of this network. In addition
we stated measurement results obtained with the Peer-
Tracker and observations made during the validation
efforts.

The PeerTracker algorithm was implemented as an
UPFrame [6] plug-in and has an interactive web-based
interface that shows the current list of the top P2P traf-
fic receivers and senders. The PeerTracker tool is used
since early 2005 by the network services group at ETH
Zurich to detect P2P clients that do not respect the
ETH network usage rules that allow P2P activity only
on default ports. We also used NetFlow data of all bor-
der routers of a medium-sized Swiss Internet backbone
(SWITCH, AS559) for stress tests. Our tool could pro-
cess 60 million flow records per hour (i.e. the complete

SWITCH traffic) in real-time on a commodity com-
puter. We currently plan a release of the PeerTracker
tool under the GPL.

As further work, we plan to adapt the PeerTracker
to new P2P networks and to changes in existing P2P
networks. We also plan to improve it further for easy
use by network administrators.

References

[1] Graffiti. http://www.graffiti.com/services/ (July
2004).

[2] IANA. http://www.iana.com/assignments/

port-numbers/services/ (July 2004).
[3] The Swiss Education & Research Network. http://

www.switch.ch.
[4] Cisco. White Paper: NetFlow Services and Applica-

tions. http://www.cisco.com/warp/public/cc/pd/

iosw/ioft/neflct/tech/napps_wp.htm, 2002.
[5] DDoSVax. http://www.tik.ee.ethz.ch/~ddosvax/.
[6] T. Dübendorfer, A. Wagner, and C. Schlegel. UP-

Frame: UDP Processing Framework. http://www.

tik.ee.ethz.ch/~ddosvax/upframe/ (July 2004).
[7] A. Gerber, J. Houle, H. Nguyen, M. Roughan, and

S. Sen. P2P, The Gorilla in the Cable. Technical
report, AT&T Labs - Research, June 2004.

[8] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble,
H. M. Levy, and J. Zahorjan. Measurement, Modeling,
and Analysis of a Peer-to-Peer File-Sharing Workload.
Technical report, October 2003.

[9] T. Karagiannis, A. Broido, and M. Faloutsos. File-
sharing in the Internet: A characterization of P2P
traffic in the backbone. Technical report, University
of California, Riverside Department of Computer Sci-
ence, November 2003.

[10] O. Müller, D. Graf, A. Oppermann, and
H. Weibel. Swiss Internet Analysis. http:

//www.swiss-internet-analysis.org/, 2003.
[11] J.-J. K. Myung-Sup Kim and J. W. Hong. To-

wards Peer-to-Peer Traffic Analysis. Technical report,
POSTECH, Korea, October 2003.

[12] M. Ripeanu. Peer-to-Peer Architecture Case Study:
Gnutella Network. In Proceedings of the First In-
ternational Conference on Peer-to-Peer Computing
(P2P01). IEEE, 2001.

[13] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble,
and H. M. Levy. Analysis of Internet Content Delivery
Systems. Technical report, University of Washington,
December 2002.

[14] S. Sen and J. Wang. Accurate, Scalable In-Network
Identification of P2P Traffic Using Application Signa-
tures. Technical report.

[15] S. Sen and J. Wang. Analyzing peer-to-peer traffic
across large networks. Technical report, AT&T Labs
- Research, November 2002.

[16] R. van de Meent and A. Pras. Assessing Unknown Net-
work Traffic. Technical report, University of Twente,
Enschede, October 2003.

